Cookies and Privacy

The University uses cookies on this website to provide the best experience possible including delivering personalised content on this website, other websites and social media. By continuing to use the site you agree to this, or your can go to our cookie policy to learn more and manage your settings.

Automotive Engineering with a Foundation Year - BEng (Hons)

  • UCAS Code: H338
  • Level: Foundation
  • Starting: September 2021
  • Study mode: Full Time (4 years)
  • Location: City Centre

Studying with us in 2021/22

It is possible that the 2021/22 academic year may be affected by the ongoing disruption caused by the COVID-19 pandemic. Any arrangements put in place by the University for the 2021/22 academic year will be in accordance with the latest government public health advice, pandemic-related/health and safety legislation, and the terms and conditions of the student contract.

Study our Automotive Engineering BEng degree course with a foundation year and join one of the select UK Universities to take part in Formula Student events at Silverstone.

Now is a fascinating time to study automotive engineering as you’ll have the chance to be at the forefront of developments within the industry. You’ll get to work in advanced automotive workshops and laboratories equipped with industry-standard equipment, as well as take advantage of more traditional office-based facilities.

You’ll gain practical experience so that you are equipped to apply engineering science to real life situations. Plus, you’ll also have the opportunity to join our BCU Formula Student racing club. 

The Foundation Year course option enables you to study for our BEng (Hons) degree over an extended full-time duration of four years by including a Foundation Certificate (year one of four). The Foundation Certificate provides a broad study programme that underpins the follow-on degree. In order to progress to the next year of your degree, it is necessary to achieve a pass in all of the modules of the Foundation Certificate.

What's covered in the course?

Our BEng (Hons) Automotive Engineering is designed to develop you as an engineer able to make a significant contribution to the industry as it goes through an important period of transition.

Our engineering courses focus on project-based activities, giving you lots of opportunity to work in teams on projects from design to implementation. This will give you practical experience of applying engineering science to real world problems, working in multidisciplinary teams to develop your interpersonal skills, and prepare you for a key aspect of modern engineering practice.

You will develop key technical skills, enhance your creative thinking and learn from industry experts, as well as gaining knowledge and application skills in stress analysis, drivetrain systems, suspension, body engineering, design and management.

Our course is structured so that its themes have a direct relevance to the industry’s current and expected future needs, and upon graduating you will have the intellectual, technical and personal qualities necessary to successfully implement new technologies.

Throughout your course you will benefit from our strong industry links with companies such as the Morgan Motor Company, Westfield Sportscars and Aquila Racing Cars, Siemens, and GKN.

You will also have the opportunity to join our BCU Formula Student racing club, which designs and builds a racing car each July to race at an IMechE-sponsored event at Silverstone.

Why Choose Us?

  • Accredited course - This course is accredited by the Institution of Engineering and Technology (IET).

  • Industrial placement year option - Gain desirable employability skills and work experience with the option of an industrial placement year, that will take place between your second and final year of the course.

  • Employable graduates - Our graduates have progressed into roles with leading companies such as Jaguar Land Rover, Ford Motor Company and Aston Martin Lagonda Ltd.

  • State-of-the-art facilities - You will be based at our Millennium Point campus in City Centre, where our facilities have undergone a £6.5 million investment with a new maker area, engineering labs/equipment and IT equipment to provide you with the very best learning experience.

  • Formula Student events at Silverstone - We are one of the select UK universities with access to take part in our international Institution of Mechanical Engineers (IMechE) Formula Student event at Silverstone. Read Thomas’ story.

  • Develop transferable skills – Work in groups and undertake project-based challenges to enhance your employability opportunities and skill set.

  • Problem-based learning - Gain an understanding of the commercial, legal, ethical and environmental factors associated with automotive engineering.

  • Travel scholarships - Opportunities to secure funding to gain experience overseas. Read about our travel scholarships here.

This course is open to International students

We are members of:

WISE member logo2 WISE members inspire girls to choose maths, physics and computing.

Entry Requirements

We accept a range of qualifications, the most popular of which are detailed below.

Essential Requirements

BB or 80 UCAS tariff points

A maximum of 3 subjects are considered. These can be other A-levels or level 3 equivalents.

LEVEL 2 QUALIFICATIONS
GCSE
  • GCSE English language and mathematics at grade C/4 or above/li>
  • Equivalent level 2 qualifications can be accepted.
  • Must have been achieved at the point of enrolment
Irish Leaving Certificate (Ordinary Level)
  • See level 3 entry under Irish Leaving Certificate for full details
Scottish Intermediate 2
  • English language and mathematics at grade C or above
  • Must have been achieved at the point of enrolment
Scottish Credit Standard Grade
  • English language and mathematics at grade 2 or above
  • Must have been achieved at the point of enrolment
Scottish National 5
  • English language and mathematics at grade C or above
  • Must have been achieved at the point of enrolment
LEVEL 3 (and above) QUALIFICATIONS
A level and Advanced VCE
  • 80 UCAS points
  • A maximum of 3 subjects are considered. These can be other A-levels or level 3 equivalents.
Access to HE Diploma
  • 60 credits overall. Minimum of 45 credits at level 3. Including 12 technical credits at Merit or Distinction..
  • Pearson BTEC National Extended Diploma
    (2016 – present)
  • Pearson BTEC Extended Diploma (QCF)
    (2010 - 2016)
  • BTEC Level 3 National Diploma
    (2002 – 2010)
  • MMP
  • Pearson BTEC Level 3 National Diploma
    (2016 – present)
  • Pearson BTEC Diploma (QCF)
    (2010 – 2016)
  • BTEC Level 3 National Certificate
    (2002 – 2010)
  • 80 UCAS points
  • Considered with one A-level or an equivalent level 3 qualification
  • Pearson BTEC National Foundation Diploma (2016 to present)

  • Pearson BTEC 90-Credit Diploma (QCF) (2010 - 2016)

  • 80 UCAS points
  • Considered with one A-level or an equivalent level 3 qualification
  • Pearson BTEC Level 3 National Extended Certificate
    (2016 – present)

  • Pearson BTEC Subsidiary Diploma (QCF)
    (2010 - 2016)

  • BTEC Level 3 National Award
    (2002 - 2010)

  • 80 UCAS points
  • Considered with one A-level or an equivalent level 3 qualification

Advanced Welsh Baccalaureate - Skills Challenge Certificate (first teaching September 2015)

  • 80 UCAS points

Welsh Baccalaureate Advanced Diploma – Core (awarded until 2016) ESW/KS Combined component

  • 80 UCAS points

International Baccalaureate Diploma

  • Obtain a minimum of 28 points overall and pass one of the following subjects from Group 4 at Higher Level (Computer Science, Chemistry, Design Technology, Physics)

  • For students who do not already hold a GCSE in Mathematics at Grade C/4 or above grade 5 in Maths (Standard Level) from the IB Diploma will be accepted

  • For students who do not already hold a GCSE in English Language at Grade C/4 or above Standard Level English Language (not literature) English A - Grade 4 or above or English B - Grade 5 from the IB will be accepted.

Other qualifications
If you have a qualification that is not listed in the table please refer to our full entry requirements on UCAS.

Further guidance on tariff points can be found on the UCAS website.
Additional information for EU/International students
Essential

Please see your country page for further details on the equivalent qualifications we accept.

In additional to the academic entry requirements listed above, international and EU students will also require the qualifications detailed in this table.

EU/Non-EU (International) Qualifications  
IELTS

6.0 overall with 5.5 minimum in all bands

If you do not meet the required IELTS score, you may be eligible for one of our pre-sessional English courses. Please note that you must have a Secure English Language Test (SELT) to study on the pre-sessional English course. More information.

International Baccalaureate Diploma (or equivalent, including internationally accredited Foundation courses).

1. For students who complete the full IB Diploma: a total of 14 points or above from three Higher Level Subjects.

2. Students who do not complete the IB Diploma will be considered on the basis of their IB Certificates.

Students must have grade 5 in Maths (Standard Level)
AND
English Group A - Grade 4 or above,
OR
English Group B and Ab Initio - Grade 5

Country-specific entry requirements and qualifications.

 

International students who cannot meet the direct entry requirements can begin their degree studies at Birmingham City University International College (BCUIC).

Additional Requirements

As part of the application process you will be invited to attend an applicant visit day where you will undertake a short one-to-one interview with an academic member of staff. This is your chance to show us how passionate you are about the subject and it will help us make a decision on your application.

This will provide you with more information about the School and your course. In addition, it will give you a chance to meet and our staff and students to gain a better understanding of what it is like to be a student here.

International Students

Entry requirements here

  • UK students
  • International students

Award: BEng (Hons)

Starting: Sep 2021

  • Mode
  • Duration
  • Fees

Award: BEng (Hons)

Starting: Sep 2021

  • Mode
  • Duration
  • Fees
  • Full Time
  • 4 years
  • £13,200 per year

If you're unable to use the online form for any reason, you can complete our PDF application form and equal opportunities PDF form instead. The University reserves the right to increase fees in line with inflation based on the Retail Prices Index or to reflect changes in Government funding policies or changes agreed by Parliament up to a maximum of five per cent.

Guidance for UK students

UCAS

UK students applying for most undergraduate degree courses in the UK will need to apply through UCAS.

The Universities and Colleges Admissions Service (UCAS) is a UK organisation responsible for managing applications to university and college.

Applying through UCAS
 Register with UCAS
 Login to UCAS
 Complete your details
 Select your course
 Write a personal statement
 Get a reference
 Pay your application fee
 Send UCAS your application

Additional costs

There are no compulsory additional costs or charges associated with studying on this course. While you may choose to purchase personal copies of text books, all our key text books are available from our library or online (subject to normal library loan and online access arrangements). If your course includes a residential study session, the accommodation costs for this are already included in your course fee.

Based on the past experience of our students, you might find it helpful to set aside about £50 for each year of your studies for stationery and study materials. All our students are provided with 100 free pages of printing each year to a maximum total value of £15.

Accommodation and living costs

The cost of accommodation and other living costs are not included within your course fees. More information on the cost of accommodation can be found in our accommodation pages.

Foundation Year

In order to complete this course a student must successfully complete all the following CORE modules (totalling 120 credits):

20 credits

Mathematics plays a key role in establishing and grounding the professional skills of an engineer. Communicating the ideas of engineering is made both easier and harder by the use of mathematical language.

This module aims to help you become proficient at developing engineering models and arguments, and following them through to their logical conclusions, since application of these arguments has to include their interpretation both to and from the mathematical language.

20 credits

The module aims to provide you with the knowledge and problem solving skills in physical science to enable you to progress to the next module in the science theme, Foundation Science II, and then on to the first year of an engineering degree.

As the practical aspects of physical science are delivered in another theme of the foundation year, the Foundation Science modules concentrate on the theoretical aspects. The subject material will be delivered in two coherent streams, one of which contains predominantly mechanical science and the other predominantly electrical science.

20 credits

This module aims to provide you with the practical and professional skills to enable you to progress to the next module in the practical theme, Practical Skills II, and then on to the first year of an engineering degree.

The theoretical aspects of physical science and maths are delivered in another theme of the foundation year. The Practical Skills modules sit alongside these and concentrate on the practical aspects to support your learning.

20 credits

Mathematics plays a key role in establishing and grounding the professional skills of an engineer. Communicating the ideas of engineering is made both easier and harder by the use of mathematical language.

This module aims to help you become proficient at further developing engineering models and arguments, and following them through to their logical conclusions, since application of these arguments has to include their interpretation both to and from the mathematical language.

20 credits

The module aims to provide you with the knowledge and problem solving skills in physical science to enable you to progress to the first year of an engineering degree. The science theme contains the material normally encountered in an A level physics course which is relevant to entry to an engineering degree. As the practical aspects of physical science are delivered in another theme of the foundation year, the Foundation Science modules concentrate on the theoretical aspects.

20 credits

This module aims to provide the practical and professional skills to enable you to progress to the first year of an engineering degree.

As the theoretical aspects of physical science and maths are delivered in another theme of the foundation year, the Practical Skills modules concentrate on the practical aspects.

The subject material will be delivered in three coherent streams one of which contains predominantly mechanical and electrical laboratory exercises, a second PC-based stream will include use of software to support project planning, communication and analysis and the third, a project space where you will have the opportunity to integrate learning from across all elements of the semester. 

Year One

In order to complete this course a student must successfully complete all the following CORE modules (totalling 120 credits):

20 credits

The module aims to provide the underpinning knowledge and problem solving skills in engineering science to enable you to progress to the next module in the theme, Engineering Principles II, and then on to the second year of a range of engineering degrees.

As the practical aspects of engineering science are delivered in another theme of the common first year, the Engineering Principles modules concentrate on the theoretical aspects. The subject material will be delivered in two coherent streams one of which contains predominantly mechanical science and the other contains predominantly electrical science.

20 credits

Mathematics plays a key role in establishing and grounding the skills of an engineer, and the ability to communicate the ideas of engineering that are expected of an engineering graduates.

The primary aim of this module is to provide the fundamental mathematical knowledge and techniques needed in order to enable you to use and apply such mathematical techniques for the evaluation, analysis, modelling and solution of realistic engineering problems. Application of these data sets has to include their interpretation both to and from the mathematical language. In addition, this module will introduce students to mathematical modelling software package. This will be used to plot, annotate basic signals and write simple programs to compute mathematical problems.

This module will develop your ability to both work on and communicate engineering realities to a wider audience, at a professional standard.

20 credits

The module aims to provide the practical and professional skills to enable you to progress to the next module in the practical theme, Practical Skills II, and then on to the second year of an engineering degree. As the theoretical aspects of physical science and maths are delivered in other themes of the first year, the Practical Skills modules concentrate on the practical aspects.

The subject material will be delivered in three coherent streams one of which contains predominantly mechanical and electrical laboratory exercises, a second PC-based stream will include use of software to support project planning, communication and analysis and the third, a project space where you have the opportunity to integrate learning from across all elements of the semester.

20 credits

The module aims to provide the underpinning knowledge and problem solving skills in engineering science to enable you to progress to the second year of a wide range of engineering degrees. As the practical aspects of engineering science are delivered in another theme of the common first year, the Engineering Principles modules concentrate on the theoretical aspects. The subject material will be delivered in two coherent streams one of which contains predominantly mechanical science and the other contains predominantly electrical science.

20 credits

This module will focus on introducing and building on well-established techniques for mathematically modelling dynamic systems (systems of interest for engineering) for contextualised engineering applications. The module will include an introduction to sophisticated signal analysis technique, Fourier series which is used to transform time-domain signals into their frequency spectra. The module is structured to include a mixture of lectures, tutorials and PC-based laboratories. The lectures will formally introduce material, in tutorials students will work through questions with tutor. The PC laboratories will involve using mathematical modelling software packages to implement mathematical operations.

20 credits

The module aims to provide the practical and professional skills to enable you to progress on to the second year of an engineering degree. As the theoretical aspects of physical science and maths are delivered in other themes of the first year, the Practical Skills modules concentrate on the practical aspects.

Year Two

In order to complete this course a student must successfully complete all the following CORE modules (totalling 120 credits):

20 credits

The module aims to provide a basic understanding of thermodynamic and fluid mechanic concepts. The understanding of the transfer of energy within thermodynamic systems and the incurred losses is vital to improve efficiencies of such systems, especially in light of growing environmental concerns and increased economic cost.

The knowledge and understanding will be gained through a balanced mixture of lectures and tutorials, whereby the learning will be supported by experiments.

20 credits

The module introduces the mathematical concepts such as transform calculus and matrix theory used to solve systems of first and second order differential equations underpinning the engineering disciplines undertaken within the Faculty.

This provides you with the capability of modelling systems using both the transfer function and statespace paradigms. In particular, you will be able to model linear systems in continuous and discrete time as well as by frequency response methods.

Teaching and assessment will comprise not only traditional lectures and tutorials but also provide training in industry standard software for problem solving within coursework assessment.

20 credits

The module provides you with the opportunity to learn about design, sustainable development, teamwork and communication whilst contributing towards real international development projects.

You will also gain the ability to communicate design ideas and practical details, to evaluate and apply both tangible and subjective feedback, and to conceive, design, implement and operate practical solutions to design opportunities.

It is anticipated that the project vehicle for this module will be the Engineers without Borders Design for People Challenge.

20 credits

An interdisciplinary module, you will work with students from all fields of engineering to develop skills in engineering leadership and experience creating a purposeful vision and delivering on that vision. This will set the professional skills for business in context by combining your technical course-specific knowledge with professional skills. It is proposed that the vehicle to deliver this will be the biomimicry global design challenge. 

20 credits

This module develops your research skills, idea generation techniques, and ability to create CAD models and manufactured components.

You will also gain the ability to communicate design ideas and practical details, to evaluate and apply both tangible and subjective feedback, and to conceive, design, implement and operate practical solutions to design opportunities.

20 credits

The Mechanical Science module applies the principles of engineering, physics, and materials science to the design, analysis, manufacture, and maintenance of mechanical systems and components. It is a branch of engineering that enables you to design, produce, and operate machinery. In keeping with the programme philosophy the module encourages learning through the practical application of fundamental mechanical science principles to the analysis and solution real world problems.

Year Three

In order to complete this course a student must successfully complete all the following CORE modules (totalling 120 credits):

20 credits

In the development cycle of new and existing components, processes and systems the use of computer analysis has a strong role to play. Reduced lead times can mean faster arrival at the market than competitors and therefore gaining an advantage. Engineers are at the centre of the development process and therefore require a good understanding of the key aspects of computer aided engineering (CAE).

20 credits

The module presents the analysis, modelling and design of modern vehicle instrumentation and control systems. Industry-standard software will be used for the design and calibration of engine, vehicle, driveline and emissions after-treatment control systems using both time and frequency domain techniques.

Teaching and assessment will comprise not only use of industry standard software for the purposes of mathematical modelling, but also traditional lectures/tutorials assessed by examination.

20 credits

Automobile design is experiencing a period of dynamic change. Alternative power-trains, fuels, materials, safety needs, and consumer demands for increased refinement will have a profound effect upon body architecture. The emphasis for this module will be on gaining insight into auto body structural behaviour and the relationship to the vehicle.

20 credits

In times of consumer - and legislation-driven demand for increased fuel efficiency and reduced emissions of vehicles, the complexity in the development of future powertrains increases. A good understanding of powertrain sub-system behaviour is required to solve such complex systems. The module therefore aims to allow you to gain understanding of current technologies, but also an inside in emerging and future technologies to address the problems of future transportation. Formal lectures, tutorials, hands-on experience in labs and solving of problem based scenarios will enhance the learning process.

40 credits

The purpose of the module is to enable you to undertake a sustained, in-depth and research-informed project exploring an area that is of personal interest to you. In agreement with your supervisor, you will decide upon your topic which will take the form of a practical outcome (artefact) with accompanying contextual material. The main consideration when choosing your topic is that it must be aligned to the programme you are studying, and you should consider the relevance of this topic to your future academic or professional development.

At this level, you will be expected to work independently but you will receive additional one-to-one support from your supervisor, who will be familiar with your chosen topic area. As you progress on the module, extra support will be available and this may take the form of group seminars, workshops and online materials that will help to develop your project. 

The Foundation Year modules focus on developing the key skills you will need to undertake a degree in engineering. In the first semester, you will study modules in Engineering Science, Mathematics for Engineers and Practical Skills. You will then explore these subjects in more depth in semester two.

Assessments will be carried out in a variety of formats, including written assignments, examinations, presentations and in-class testing. There will also be an emphasis on interactive learning, problem-solving tutorials and computer applications.

Intellectual skills, particularly analytical and problem solving skills are developed using a range of case-studies and problem / task based learning scenarios, promoting self-directed learning facilitated by problem-based learning centred upon industry practice and its inherent problems.

Assessment of such activities includes practical simulation and design exercises and individual and group projects, in addition to the methods mentioned above.

Attendance requirements

For more information on attendance requirements, course contact time and suggested self-study hours, download the course specification.

Trips and visits

You will have the opportunity to take part in a range of visits during the course, typically to vehicle manufacturers and tier one component suppliers.

Our course is highly respected by the industry. Our graduates typically enter work with blue chip engineering companies, and are expected to progress to Chartered Engineer status.

When you study with us you’ll learn all the key aspects of automotive engineering that will help you to get a job and you’ll have the intellectual, technical and personal qualities needed to implement new technologies in the automotive engineering sector.

Wherever possible, we involve employers in curriculum planning and many of our lecturers come from and maintain their links with industry, ensuring they maintain their knowledge of the latest developments.

This strong partnership means you benefit throughout your time with us, because you have access to some of the world’s leading car companies, including Bentley, Morgan, Jaguar Land Rover and Ford.

It’s why many of our graduates have gone on to start very successful careers in a wide variety of roles in the industry, in areas ranging from development or design and performance engineering to automotive marketing.

Placements

We aim to have you employer-ready by the time you graduate, and as part of this commitment we encourage you to further enhance your career prospects by including an industrial placement in your course.

You will do your placement after the second year of study, which will extend the duration of your course to four years if you are studying on a full-time basis, and you’ll be supported throughout your time away.

Thanks to our excellent partnerships and strong relationships with industry, you could join the ranks of our students who have gained exceptionally high quality work experience at companies including Bentley.

OpportUNIty

OpportUNIty Student Ambassador

OpportUNIty: Student Jobs on Campus ensures that our students are given a first opportunity to fill many part-time temporary positions within the University. This allows you to work while you study with us, fitting the job around your course commitments. By taking part in the scheme, you will gain valuable experiences and employability skills, enhancing your prospects in the job market.

It will also allow you to become more involved in University life by delivering, leading and supporting many aspects of the learning experience, from administration to research and mentoring roles.

Birmingham City University is a vibrant and multicultural university in the heart of a modern and diverse city. We welcome many international students every year – there are currently students from more than 80 countries among our student community.

The University is conveniently placed, with Birmingham International Airport nearby and first-rate transport connections to London and the rest of the UK.

Our international pages contain a wealth of information for international students who are considering applying to study here, including:

Birmingham City University International College (BCUIC)

International students who have a serious interest in studying with us but who perhaps cannot meet the direct entry requirements, academic or English, or who have been out of education for some time, can enter Birmingham City University International College (BCUIC) and begin their degree studies.

BCUIC

BCUIC is part of the global Navitas Group, an internationally recognised education provider, and the partnership allows students to access the University’s facilities and services and move seamlessly through to achieving a Bachelor’s degree from Birmingham City University.

Learn more about BCUIC

Our Facilities

We are constantly investing in our estate and are currently in the process of spending £340 million on new learning facilities.

Building work on our new Conservatoire began in the summer of 2015 – and is scheduled for completion in summer 2017. This, along with the construction of a new city centre accommodation block, means our students have access to their very own building sites.

We couple this with the more traditional, office-based facilities:

Surveying equipment

Part of your learning activity will be hands-on, including carrying out survey work using a range of equipment, such as levels, theodolites, measuring tapes.

Computer Assisted Design (CAD)

You will be provided with the latest CAD software – free of charge – to enable you to acquire the skills you need in a modern design office.

Learning from industry experts

Discover more about the industry experts you can meet on our Engineering degree courses.

Laura Leyland is one of our lecturers, watch this video to find out more.

Man-Fai Yau Staff Profile Image

Man-Fai Yau

Senior Lecturer

Man-Fai has 10 years' experience in private sector industry, two years' with a Knowledge Transfer Partnership (KTP) and 12 years' university lecturing.

Staff Profile Image of Florimond Gueniat

Florimond Gueniat

Lecturer in Mechanical Engineering

Florimond Guéniat has a PhD in fluid mechanics and computer science from Univ. Paris Sud.  

He then spent two years in the Department of Mathematics, at Florida State University researching on the control of fluid flows.

Before joining BCU, he also spent  two more years in the department of Mechanical Engineering at University of Illinois at Urbana Champaign, developing reduced-order models for reactive flows. Most of his research centres around the data-driven identification and control of coherent structures. 

Read Florimond's full profile

Dr Richard Cornish

Dr Richard Cornish

Senior Lecturer

Dr Richard Cornish is an Automotive Engineer with a wide experience of automotive research and development, especially developing test methods and models to capture new practical knowledge and theoretical insights.

His areas of expertise include simulation, test, measurement, durability, fatigue and product perception, and he has worked on CAS, trains, buildings and factories projects in the UK and abroad.