
Human Biosciences - BSc (Hons) *
Currently viewing course to start in 2026/27 Entry.
Human Biosciences is an exciting branch of modern science, involving many disciplines and cutting-edge technology. It is focused on human biology and health, providing a perfect springboard for a variety of careers within the growing life sciences sector....
- Level Undergraduate
- Study mode Full Time
- Award BSc (Hons)
- Start date September 2026
- Subject
- Location City South
This course is:
Available with Professional Placement year
Open to International Students
Overview
Human Biosciences is an exciting branch of modern science, involving many disciplines and cutting-edge technology. It is focused on human biology and health, providing a perfect springboard for a variety of careers within the growing life sciences sector.
Our degree is practice-led and designed to support you to develop a range of practical and analytical skills, with the opportunity to put them into practice during an optional professional placement year. Through the course, you will gain an insight into human life processes, both in health and disease.
What's covered in this course?
Our Human Biosciences course encompasses several disciplines, including human anatomy and physiology, human nutrition and metabolism, human molecular genetics, infection and immunity, pharmacology and toxicology and science communication. These subjects play a huge role in healthcare provision and medical research, as well as underpinning the biotechnology and pharmaceutical industries. With input from industry and healthcare science, this course has been designed to help you develop important practical and scientific skills sought after by employers.
To further support your employability, you will have the opportunity to complete a professional placement year in an industrial or research setting between years two and three of the course. In the final year you will also undertake an independent research project under the guidance of one of our expert academic staff.
During year one, you will learn alongside students on our BSc (Hons) Biomedical Science course. During years two and three you will study a Human Biosciences-specific curriculum, covering a greater variety of subjects with more optional modules in your final year compared with the IBMS-accredited BSc (Hons) Biomedical Science. These include human nutrition and metabolism, communicating science, biomaterials and tissue engineering, proteomics, and pharmacology and toxicology. This gives you the opportunity to explore subjects which you may wish to build upon in your career, in roles in drug development and clinical trials, sales and marketing, or research, or through postgraduate level study for example in Sport and Exercise Nutrition, Dietetics, or Medical Engineering.
Professional Placement Year
This course offers an optional professional placement year. This allows you to spend a whole year with an employer, following successful completion of your second year, and is a great way to find out more about your chosen career. Some students even return to the same employers after completing their studies.
If you choose to pursue a placement year, you will need to find a suitable placement to complement your chosen area of study. You will be able to draw on the University’s extensive network of local, regional, and national employers, and the support of our Careers teams. If you are able to secure a placement, you can request to be transferred to the placement version of the course.
Please note that fees are payable during your placement year, equivalent to 20% of the total full-time course fee for that year.
Why Choose Us?
- Taught by expert academic staff with a range of experience from the biotechnology industry, clinical sciences, education, and research.
- Work in our well-equipped teaching laboratories and develop a broad range of skills that will prepare you for a career in the Life Sciences and beyond.
- Get involved in our cutting-edge research, and work alongside our research staff on an independent project in the final year.
- Apply for a travel scholarship as part of our Go Abroad scheme to carry out exciting work placements overseas.
Open Days
Join us for an Open Day where you'll be able to learn about this course in detail, chat to students, explore our campus and tour accommodation. Booking isn't open for this event yet, register your interest and we'll let you know as soon as booking goes live.
Next Open Day: 28 June 2025
Entry Requirements
Essential requirements
112 UCAS Tariff points. Learn more about UCAS Tariff points.
If you have a qualification that is not listed, please contact us.
Fees & How to Apply
UK students
Annual and modular tuition fees shown are applicable to the first year of study. The University reserves the right to increase fees for subsequent years of study in line with increases in inflation (capped at 5%) or to reflect changes in Government funding policies or changes agreed by Parliament. View fees for continuing students.
(↩Back to price) * The Government is proposing to increase the cap on full-time regulated tuition fees to £9,535 from 2025/26 onwards and the University is planning on increasing fees to that maximum level once legislation is enacted. Part-time fees are charged pro-rata, where applicable.
International students
Annual and modular tuition fees shown are applicable to the first year of study. The University reserves the right to increase fees for subsequent years of study in line with increases in inflation (capped at 5%) or to reflect changes in Government funding policies or changes agreed by Parliament. View fees for continuing students.
Guidance for UK/EU students
UK and EU students applying for most undergraduate degree courses in the UK will need to apply through UCAS.
The Universities and Colleges Admissions Service (UCAS) is a UK organisation responsible for managing applications to university and college.
Applying through UCAS
Register with UCAS
Login to UCAS
Complete your details
Select your course
Write a personal statement
Get a reference
Pay your application fee
Send UCAS your application
Guidance for International students
There are three ways to apply:
1) Direct to the University
You will need to complete our International Application Form and Equal Opportunities Form, and submit them together with scan copies of your original academic transcripts and certificates.
2) Through a country representative
Our in-country representatives can help you make your application and apply for a visa. They can also offer advice on travel, living in the UK and studying abroad.
3) Through UCAS
If you are applying for an undergraduate degree or a Higher National Diploma (HND), you can apply through the UK’s Universities and Colleges Admissions Service (UCAS).
You can request a printed form from your school or nearest British Council office. You will be charged for applying through UCAS. Birmingham City University’s UCAS code is B25 BCITY.
Personal statement
Your personal statement is a highly important part of your application. It gives you a crucial opportunity to say why you’re applying and why the institution should accept you.
Here are the key areas you’ll need to address:
Course choice
Why does this course appeal? What areas are of particular interest?
Career plans
If you have a specific career in mind, say how your chosen course will help you pursue this goal.
Work experience
Mention any work that is relevant to your subject, highlighting the skills and experience gained.
School or college experience
Highlight skills gained at school/college, eg summer schools or mentoring activities.
Non-accredited skills or achievement
eg Duke of Edinburgh Award, Young Enterprise scheme.
You should also mention your future plans – if you’re planning to take a year out, don't forget to give your reasons. Talk about any subjects you’re studying that don’t have a formal assessment and any sponsorships or placements you’ve applied for. And don't be scared to add in details about your social, sports or leisure interests.
Get more information on writing personal statements.
Course in Depth
Year One
In order to complete this course, you must successfully complete all the following CORE modules (totalling 120 credits).
In this module you will be taught a range of fundamental scientific skills that you will apply and develop across the course. You will embark on a range of instructional and investigative laboratory practical's designed to introduce you to scientific instruments that are commonly used in biology labs.
During these experiments you will generate your own data, which you will be shown how to analyse appropriately. When generating any kind of data, it is important that replicate measurements are taken to ensure that the results are reproducible, and that the methodologies and technologies used to generate the data are reliable and consistent and this will be discussed in the module.
You will be taught to apply basic scientific numeracy and data handling skills, and how to write using scientific conventions. These skills will be further developed as you process from the degree course.
Cell and molecular biology are key disciplines within the biosciences. This module will introduce you to the ‘cell’ as a fundamental unit of life. You will learn about cell structure and function in the context of the tissue that cells belong to, protein synthesis and trafficking, cell communication and cell signalling, the cell cycle and programmed cell-death, and the significance of stem cells.
In this module you will also learn the fundamentals of genetics and molecular biology. You will learn about the structure and function of genes, genome organisation, gene expression and its regulation, and patterns of inheritance.
Biochemistry is the study of the fundamental chemical and molecular reactions that occur within living organisms. The aim of this module is to introduce you to structure/function relationships of key biological molecules, as well as the fundamental biochemical reactions that occur within the human body. The module is delivered in 5 broad themes covering:
- properties of water, pH and buffers
- nucleic acid structure and function
- protein structure and function
- carbohydrates and lipids
- enzymes and metabolism
As well as learning fundamental concepts and theory in biochemistry, you will develop a range of practical skills with relevance to a range of careers in life sciences too.
You will be taught through a series of lectures, interactive workshops, and laboratory classes. Labs will cover methods of protein isolation and purification, protein separation and detection by SDS-PAGE and Western blotting, as well as methods for measuring enzymatic activity. You will learn how to analyse, interpret, and present the data you obtain in the lab.
This module introduces you to the world of microbiology. The diversity of microorganisms, their habitats and relationships with humans will be explored. This module examines the properties of microorganisms, their structures and compositions and their interactions with the human body in health and disease. You will learn about how we grow different microorganisms, their classification and identification. You will be taught different methods of sterilisation, aseptic techniques, and their applications in clinical and industrial contexts. You will learn about the role of the microbiome in health and disease, showing how it can be manipulated to manage a range of clinical conditions. Towards the end of the module, you will also learn about the strategies used by pathogens to circumvent the body’s defences and how they cause damage to the host, resulting the symptoms associated with each pathogen. Finally, you will be given an introduction into viruses, fungi, and parasites.
This module will introduce you to the structure (anatomy) and function (physiology) of the adult human body. It aims to provide you with a solid grounding into the cells, tissues and organs that allow the different organ systems to function effectively, so that you can understand the pathophysiology resulting from dysfunction.
The pivotal concept of this module is homeostasis, the control mechanisms that ensure optimal functioning of the body in different conditions. You will build upon many of the concepts learned in the biochemistry, and cell and molecular biology modules, to develop a holistic understanding of body (dys)function. This will then be further explored in later modules, including cellular pathology and pathophysiology, and Integrated studies.
Pharmacology is the science of drugs and their effect on living systems. First defined in the 19th century, pharmacology began with studies of the biological effects of naturally occurring compounds. In more recent times, advancements in synthetic chemistry led to a revolution in the pharmaceutical industry, and in the science of pharmacology itself. These advancements have allowed the pharmaceutical industry to grow into a major contributor to the world’s economy, with estimates the industry is worth over £1000 billion annually, and employs over 70,000 people in the UK alone.
Year Two
In order to complete this course, you must successfully complete all the following CORE modules (totalling 120 credits).
Communicating Science 20 credits
This module will build upon the level 4 Microbiology module and introduce you to the anatomy and function of the immune system and immunopathology. In the medical microbiology section, we will introduce you to key pathogenic microorganisms and how they cause disease. Indicative topics will include epidemiology, virology, skin infections, GI tract infections, CNS infections, respiratory tract infections, UTI and STD infections. As some infections can be life-threatening, one of the critical issues in clinical microbiology is the speed of reporting diagnostic test results. Therefore, you will review how cutting-edge, time-saving techniques are beginning to replace traditional culture-based methods.
You will also examine mechanisms of antibiotic resistance, antibiotic-sensitivity testing and antimicrobial stewardship strategies. The immunology section will introduce topics such as inflammation, innate and adaptive immunity, microbial defence mechanisms, antigen processing and presentation, antibody structure and function and complement. An overview of immune pathology will be provided in preparation for the 3rd year Clinical Immunology module.
Human nutrition and metabolism 20 credits
Biomaterials and Tissue Engineering 20 credits
Pathophysiology is the study of abnormalities and disturbances of normal physiological functions, caused or resulting from diseases and conditions, in living beings. The four components of pathophysiology; aetiology (causes), pathogenesis (process in which a disease develops, clinical manifestations (visible or detectable signs and symptoms) and treatment implications will be considered for several diseases and conditions.
The module will start with an understanding of the global burden of disease. Then you will be taught pathophysiology at the cellular level, including cell injury, aging and death, and inflammation. There will then be a focus on alterations caused by diseases and conditions in cardiac function, respiratory function, kidney function, gastro-intestinal tract, and neurological function.
In this module you will explore the various types of research that are conducted in the Biosciences. You will learn how to find, read, and interpret scientific publications, and how to use existing research to form new and exciting research hypothesis. You will also learn about the legal, ethical and safety issues that surround different types of research in biomedical sciences too. We will introduce you to bioinformatics and other forms of big data that drive many new advances in healthcare and policy.
Final Year
In order to complete this course, you must successfully complete all the following CORE modules (totalling 100 credits).
In this module you will complete a substantial piece of independent research, with the guidance and supervision of an academic member of staff.
The module will provide you with an authentic experience of how scientific information is reviewed, and how novel information is acquired, analysed, and presented. You will be involved in the initial planning of the project, the continual project development, and be responsible for the communication of the research findings. It is an opportunity to apply the theoretical, research, and academic skills that have been acquired throughout the programme to answer novel questions. The project enables you to demonstrate initiative and creativity in your approaches to examining a specific problem or question. A range of project types are available to enable you to meet the learning outcomes; these may include laboratory-based and non-laboratory-based data collection, bioinformatics, questionnaire- based studies, or systematic reviews that are hypothesis driven and include an element of statistical analysis.
In recent years, the fields of genomics, transcriptomics, and proteomics have reshaped the landscape of biological and biomedical research. This has not only deepened our understanding of fundamental biological mechanisms but has also paved the way for groundbreaking applications in personalised medicine, disease diagnostics, and the development of targeted therapies.
In this module you will develop an in depth understanding how genomics, transcriptomics and proteomics have contributed to our understanding of a range of diseases and is transforming the diagnosis and clinical management of disease. You will explore the principles and applications of personalised medicine, emphasising the role of human molecular genetics in tailoring medical treatments to individual patients. This will be supported with recent case studies, providing insightful illustrations of real-world scenarios, and offering recommendations for both diagnosis and treatment of disease
Within the last decade, outbreaks and epidemics on the global scale have been experienced. These include the Middle East Respiratory Virus (MERS), Ebola, the Zika virus, SARS-CoV-2, Monkey pox and the 2022 hepatitis epidemics. From the 2023 WHO Health Statistics Report, 1.3 million new cases of HIV were recorded in 2022 alongside 10.6 million cases of tuberculosis and 1.65 billion cases of neglected tropical diseases. The socioeconomic burden of infectious diseases globally is huge and recent experiences with epidemics and the COVID-19 pandemic has revealed the fragility of health systems globally as well as significant global healthcare inequities.
This module aims to provide you with a comprehensive understanding of a broad range of advanced immunology topics. The module will build on the foundation of immunology knowledge provided in the 2nd year of the course, layering over clinical elements including the dysfunctional immune system and the aetiology of immune-mediated disease. You will review the ‘bench-to-bedside’ approach that underpins advancements in immune-biotechnology, and will evaluate the principles of antibody engineering, vaccine development, and immunotherapeutic strategies. An understanding of current laboratory techniques applicable to clinical immunology services is provided in the form of workshops and practical sessions.
In order to complete this course, you must successfully complete at least 20 credits from the following indicative list of OPTIONAL modules.
All core modules are guaranteed to run. Optional modules will vary from year to year and the published list is indicative only.
Pharmacology and Toxicology 20 credits
Proteomics for Human Biosciences 20 credits
How you'll learn
The curriculum design has been informed by the latest research and practice, with input from a range of employers, to ensure that you have the skills and experiences needed for a career in the Human Biosciences. The curriculum enables you to acquire a broad but in-depth knowledge of Human Biosciences, and to develop the range of technical and transferable skills needed for a range of jobs or further study.
The course is delivered using a blended approach with a combination of scheduled and directed in class and online learning, supplemented with students’ own independent study. Scheduled classes will include lectures, smaller group workshops to consolidate learning, and laboratory practicals to develop key lab and data handling skills.
Lectures may be delivered in-person or as hybrid and recorded to support accessibility. A range of digital technologies are used to enhance your learning experience as part of our blended approach (for example, LT LabStation, Anatomy TV & Anatomage tables and polling software).
Further studies
On completion of the course, you may wish to progress onto a taught Master’s programme or research degree in human bioscience or biomedical related subjects.
Employability
Enhancing your employability skills
Our Human Biosciences course encompasses several disciplines, including human anatomy and physiology, human nutrition and metabolism, human molecular genetics, infection and immunity, pharmacology and toxicology and science communication. These subjects play a huge role in healthcare provision and medical research, as well as underpinning the biotechnology and pharmaceutical industries.
With input from industry and healthcare science, this course has been designed to help you develop important practical and scientific skills sought after by employers. In your final year, you will also undertake an independent research project under the guidance of one of our expert academic staff, which will further enhance your skills.
Graduate jobs
This course will support your progression into a range of graduate job roles, including in biotechnology, drug development and clinical trials, sales and marketing, or research. It can also be used as an entry qualification for postgraduate level study, for example Physician Associate, Graduate Entry Medicine/Dentistry, Sport and Exercise Nutrition, Dietetics, or Medical Engineering.
Links to industry
Our degree is practice-led and designed to support you to develop a range of practical and analytical skills, valued by employers. Through the course, you will gain an insight into human life processes, both in health and disease.
Placements
To further support your employability, you will have the opportunity to complete a professional placement year in an industrial or research setting between years two and three of the course. You would be responsible for securing your placement with support from our dedicated placements tutor, and a placement cannot be guaranteed.
Facilities & Staff
We have invested over £400 million in our facilities, including an upgrade to our Skills and Simulation facilities at City South Campus. We boast up-to-date, innovative facilities that simulate the real situations that you may come across in the workplace. These resources are essential in offering you a hands-on introduction to health and social care practice.
Nutrition Science Kitchen
Our kitchen has several workstations to allow you to wash, prepare and cook food. There are multi-coloured chopping boards (following food hygiene standard regulations) and a range of utensils and appliances. This space is used by a range of courses including Dietetics, Secondary Design and Technology and Sport. You may use this room to prepare certain meals for teaching basic cooking or baking skills to school children and exploring nutritional education, or protein high recipes for athletes to support their training and fitness regime.
Microbiology Laboratory
The lab is equipped with modern equipment for teaching the molecular biology techniques that underpin modern clinical and research labs such as polymerase chain reaction (PCR) machines and a variety of cell-analysis and cell-culture tools. The department also has DNA sequencing equipment.
Bioscience Laboratory
Our purpose-built bioscience laboratory features a range of specialist equipment to support your studies, including Zeiss PrimoStar microscopes.
Nutrition Science Research Laboratory
This laboratory is used by staff or students doing specific projects such as analysing the chemistry of food in the later stages of their degree.
Skills Classroom
This room can be used to practise a variety of skills but is primarily home to our Anatomage tables. An Anatomage table allows you to investigate anatomy digitally, from organs and muscles to skeletal forms and blood flow, the software includes real-life MRI scan data to help you develop your understanding of anatomy.
Our staff
Dr Martin Figgitt
Lecturer in Biomedical Sciences
Martin has a good biomedical science background with experience in both research and clinical environments. His clinical science experience includes working in hospital blood sciences laboratories performing various blood tests, such as full blood counts, coagulation screening and blood film analysis and blood transfusion serology and cross...
More about MartinDr James Barnett
Senior Lecturer (Biomedical Science)
James graduated from the University of Sheffield in 2000 with a BSc (Hons) in Biochemistry and Genetics. James’ first graduate job was at The Binding Site Ltd, where he was employed as a technician In the monoclonal antibodies department. James later embarked on a research career, and in 2002 joined the group of Professor Colin Robinson in the Dept...
More about JamesDr Martin Goldberg
Lecturer in Clinical Microbiology
After completing his degree in Bacteriology and Genetics at the University of Newcastle upon Tyne, Martin worked for several years as a Biomedical Scientist in the large microbiology labs at Leicester Royal Infirmary. During this time, he became a Fellow of the Institute of Biomedical Sciences. Martin then moved to the Genetics Department at...
More about MartinDr Chris Hartley
Lecturer in Biomedical Sciences
Dr Hartley completed a BSc in Sports and Exercise Science at the University of Leeds before working for an orthopaedic company. Whilst working he completed an MSc in Biomechanics at Manchester Metropolitan University. Chris completed his PhD at Loughborough University, investigating ‘the effect of high impact exercise on markers of bone and joint...
More about ChrisDr Helen Clarke
Senior Lecturer
Dr Helen Clarke is a Senior Lecturer at Birmingham City University. She completed both her degree and PhD at Aston University. Her degree is in Applied and Human Biology and her PhD focuses on the effects of Metformin on the Vascular system. She joined BCU in 2003 and embarked on her teaching career in health education. She teaches on clinical...
More about Helen