PhD studentships

PhD studentships are a type of scholarship for your research. Generally, a PhD studentship will provide at least the full standard UK/EU fees, and will usually include a maintenance stipend as well. The studentship will normally focus on an area of research that is of interest to the sponsoring party. Below are some of the PhD studentships available:

Structural performance of cross laminated timber (CLT) buildings under dynamic load

How to apply

The closing date for applications is 12am on Wednesday 17 July 2019.

You can find details on studying for a PhD and details of how to apply here

When applying, please complete the online application form through the above provided link where you will be required to upload your proposal in place of a personal statement.

Reference: EBE-052019-PhD-2

Contact:

For Informal academic enquiries please contact the academic supervisor, Dr Mohammad Reza Salami (mohammad.salami@bcu.ac.ukor +44 (0) 121 331 6417) of the Materials and Manufacturing Research Group, Centre of Engineering, School of Engineering and the Built Environment, Faculty of Computing, Engineering and the Built Environment, Birmingham City University.

For all administrative enquiries please contact Bernadette Allen (bernadette.allen@bcu.ac.uk) from the Doctoral College, Faculty of Computing, Engineering and the Built Environment, Birmingham City University.

Overview:

Cross Laminated Timber (CLT) has become a widely used engineered timber product, and the primary structural material for Mass Timber Construction, an approach that is expected to contribute substantially to reducing the CO2 emissions of the construction industry. With a growing number of CLT buildings appearing across Europe, interest in the system is increasing, particularly for mid-rise residential sector projects where traditional timber systems are not a cost-effective option. CLT is a renewable, green and sustainable material, which creates low carbon or carbon neutral developments. CLT is a relatively light building material which is a desirable quality for mid- and high-rise CLT building in particular in earthquake-prone regions in Europe or the US. While CLT is now frequently used for the mid-rise residential sector, the next step is to consider how CLT can apply to taller structures. However, high rise CLT construction remains unproven in seismic zones, while its novelty means that it has a limited track record under complex dynamic loads. This project aims to investigate the performance of mid- and high-rise CLT buildings under wind loads and seismic excitation. To do so, strong data from a full-scale shaking table test will be used to develop and validate structural computer models for CLT buildings. The project involves data processing/analysis of experimental investigations and developing/validating finite element (FE) models for CLT buildings.

Person specification:

A valid English language qualification, such as International English Language Test System (Academic IELTS) or equivalent with an overall score of 6.5 with no band below 6.0, must be submitted with your application.

We are looking for an enthusiastic and highly motivated candidate who should have or be in the process of obtaining an excellent first degree (a 2:1 or above) or MSc degree with Distinction, preferably in a relevant engineering discipline (e.g.Civil, Environmental or Chemical Engineering), or  in Mathematics/Physics,  or in Physical Geography, or in a related discipline.  The role will involve field visits to obtain primary datasets through tracer tests, analyses of data, and development of a model.

Thus applicants should demonstrate:

  •         Good knowledge of dynamics, structural analysis, material behaviour, computer modelling and data processing using Matlab
  •         Experience in structural modelling using OpenSees and ANSYS.
  •         Good written and oral communication skills are essential.
  •         Knowledge and experience of laboratory testing would be an advantage.

Funding notes

The opportunity is open to Home, EU and International applicants who meet the required Birmingham City University eligibility criteria. The PhD studentship includes a full stipend, paid for a period of 3 years at RCUK rates (in 2019/20 this is £15,009 pa) and fees at Home/EU rate. This studentship is available for September 2019 start and no later than January 2020. International applicants are eligible to apply for this studentship but must meet the shortfall on fees between Home/EU and International rate.

References:

[1] Ioannidou, V.G. & Pearson, J.M. (2018). ‘Hydraulic & Design Parameters in Full-Scale Constructed Wetland & Treatment Units: Six Case Studies’. Environmental Processes.

[2] Kjellin, J, Wörman, A, Johansson, H, & Lindahl, A. (2007). Controlling factors for water residence time and flow patterns in Ekeby treatment wetland, Sweden. Advances in Water Resources, 30(4), 838-850.

[3] Min, J. H. & Wise, R. W., (2009). Simulating short-circuiting flow in a constructed wetland: the implications of bathymetry and vegetation effects. Hydrological Processes, 23, 830-841.

[4] Nepf, H.M. (2012a). Flow and transport in regions with aquatic vegetation. Annual Review of Fluid Mechanics, 44, 123-142.

[5] Shucksmith, J. D. (2008). Impact of vegetation in open channels on flow resistance and solute mixing. PhD Thesis. Sheffield.

[6] Somes, N.L.G., Persson, J. & Wong, T.H.F. (1998). Influence of Wetland Design Parameters on the Hydrodynamics of Stormwater Wetlands. Hydrastorm, Adelaide, 27-30 September, 1998, 123-128.

[7] Stovin, V.R., Grimm, J.P, & Lau, S.D (2008). Solute Transport Modeling for Urban Drainage Structures. ASCE, 134(8).

[8] Cowardin, L.M., Carter, V., Golet, F.C. and LaRoe, E.T., 1979. Classification of wetlands and deepwater habitats of the United States. US Department of the Interior, US Fish and Wildlife Service.

An integrated approach to improve hydraulic and hydrologic design of constructed wetlands

How to apply

The closing date for applications is 12am on Wednesday 17 July 2019.

You can find details on studying for a PhD and details of how to apply here

When applying, please complete the online application form through the above provided link where you will be required to upload your proposal in place of a personal statement.

Reference: EBE-052019-PhD-2

Contact:

For Informal academic enquiries please contact the academic supervisor, Dr Vasiliki Ioannidou (vasiliki.ioannidou@bcu.ac.uk) of the Environment & Policy Research Group, Centre of Engineering, School of Engineering and the Built Environment, Faculty of Computing, Engineering and the Built Environment, Birmingham City University.

For all administrative enquiries please contact Bernadette Allen (bernadette.allen@bcu.ac.uk) from the Doctoral College, Faculty of Computing, Engineering and the Built Environment, Birmingham City University.

Overview:

Subject description: The research subject Integrated Approach to Improve Hydraulic and Hydrologic Design of Constructed Wetlands includes the study of processes related to hydraulic criteria and mixing patterns for optimization of constructed wetlands efficiency and prediction of pollution mitigation into downstream waterways through quantification of hydrodynamics and transport processes.

Project Description: We are recruiting a PhD student on optimization of hydraulic criteria and hydrologic design of constructed wetlands. The student is expected to generate a unique database about treatment, mixing and physical characteristics of the systems obtained through field experiments, including tracer studies. Numerical modelling tools are to be applied on the validated obtained datasets of mixing, treatment and physical parameters.

The project will require field visits to collect data, analyses of data and development of a model to optimize the hydraulic design of the systems and the prediction of reduction of pollutant load based on the empirical datasets. It provides an excellent opportunity for the student to establish an international research profile in through parallel national and international projects and through our industrial collaborations with our external partners, including The Coal Authority, Constructed Wetland Association, Severn Trent, Thames21, and other partners.

Duties: The project will be conducted by the PhD student, together with supervisors and technical support personnel.

Person specification:

A valid English language qualification, such as International English Language Test System (Academic IELTS) or equivalent with an overall score of 6.5 with no band below 6.0, must be submitted with your application.

We are looking for an enthusiastic and highly motivated candidate who should have or be in the process of obtaining an excellent first degree (good 2:1 or above) or MSc degree with Distinction  preferably in a relevant engineering discipline (e.g.Civil, Environmental or Chemical Engineering), or  in Mathematics/Physics,  or in Physical Geography, or in a related discipline.  The role will involve field visits to obtain primary datasets through tracer tests, analyses of data, and development of a model.

Thus applicants should demonstrate:

  •         Good knowledge of maths, hydraulics and hydrology.
  •         Experience in analysing datasets.
  •         Good written and oral communication skills are essential.
  •         Knowledge and experience of lab/field work, and numerical/programming skills would be an advantage.

Funding notes

The opportunity is open to Home, EU and International applicants who meet the required Birmingham City University eligibility criteria. The PhD studentship includes a full stipend, paid for a period of 3 years at RCUK rates (in 2019/20 this is £15,009 pa) and fees at Home/EU rate. This studentship will start in September 2019 and no later than January 2020. International applicants are eligible to apply for this studentship but must meet the shortfall on fees between Home/EU and International rate.

References:

[1] Ioannidou, V.G. & Pearson, J.M. (2018). ‘Hydraulic & Design Parameters in Full-Scale Constructed Wetland & Treatment Units: Six Case Studies’. Environmental Processes.

[2] Kjellin, J, Wörman, A, Johansson, H, & Lindahl, A. (2007). Controlling factors for water residence time and flow patterns in Ekeby treatment wetland, Sweden. Advances in Water Resources, 30(4), 838-850.

[3] Min, J. H. & Wise, R. W., (2009). Simulating short-circuiting flow in a constructed wetland: the implications of bathymetry and vegetation effects. Hydrological Processes, 23, 830-841.

[4] Nepf, H.M. (2012a). Flow and transport in regions with aquatic vegetation. Annual Review of Fluid Mechanics, 44, 123-142.

[5] Shucksmith, J. D. (2008). Impact of vegetation in open channels on flow resistance and solute mixing. PhD Thesis. Sheffield.

[6] Somes, N.L.G., Persson, J. & Wong, T.H.F. (1998). Influence of Wetland Design Parameters on the Hydrodynamics of Stormwater Wetlands. Hydrastorm, Adelaide, 27-30 September, 1998, 123-128.

[7] Stovin, V.R., Grimm, J.P, & Lau, S.D (2008). Solute Transport Modeling for Urban Drainage Structures. ASCE, 134(8).

[8] Cowardin, L.M., Carter, V., Golet, F.C. and LaRoe, E.T., 1979. Classification of wetlands and deepwater habitats of the United States. US Department of the Interior, US Fish and Wildlife Service.

Approaches to wellbeing in Birmingham schools
Project Title: Approaches to well-being in Birmingham schools (REF: GRTAWELL)

This is an exciting opportunity to conduct an interdisciplinary PhD study spanning the Education and Health fields to explore young children’s well-being in the context of one combined authority in England. The specific area of well-being to explore will depend upon the candidate and their field of expertise and interests.

Contact: Dr Carolyn Blackburn or Dr Kate Thomson

Download this document to see the full project details

Moving evidence into practice: using knowledge mobilisation theory to address maternal obesity in Birmingham

Research in the School of Nursing and Midwifery at Birmingham City University has a focus on clinically relevant studies.  We are seeking proposals for a PhD study that will explore how knowledge mobilisation techniques may be used to address maternal obesity in Birmingham.

To discuss the research proposal in more detail, please contact:

Professor Fiona Cowdell: Fiona.cowdell@bcu.ac.uk

Professor Trixie McAree: trixie.mcaree@bcu.ac.uk
For further information, download the research project PDF