Cookies and Privacy

The University uses cookies on this website to provide the best experience possible including delivering personalised content on this website, other websites and social media. By continuing to use the site you agree to this, or your can go to our cookie policy to learn more and manage your settings.

72 points required

Clearing 2021

There are places available on this course for 2021.

course page main image

Civil Engineering with a Foundation Year - BEng (Hons)

September 2021 — UCAS code H20F

Want to become a Civil Engineer? Study our Civil Engineering degree course with a foundation year. This course, designed to meet the requirements of relevant professional bodies, will give you the best start to your career in civil engineering. Much of your learning activity will be hands-on, with access to our strong industry links....

72points required

Calculate UCAS points

Clearing 2021

There are places available on this course.

Two ways to apply now

Call us 0121 331 6777

Clearing hotline opens Tuesday 10 August

Studying with us in 2021/22

It is possible that the 2021/22 academic year may be affected by the ongoing disruption caused by the Covid-19 pandemic.  Information about the arrangements the University has put in place for the 2021/22 academic year in response to Covid-19 and the emerging variants can be found here.


Should the impact of Covid-19 continue in subsequent years of your course, any additional and/or alternative arrangements put in place by the University in response will be in accordance with the latest government public health advice, pandemic-related/health and safety legislation, and the terms and conditions of the student contract.

  • Level Foundation
  • Study mode Full Time
  • Location City Centre
  • School School of Engineering and the Built Environment
  • Faculty Faculty of Computing, Engineering and The Built Environment

Clearing 2021

72 points
(or equivalent) is the minimum you will need to be considered for this course in Clearing.
Use the UCAS Tariff Calculator to work out your points.

Apply nowCall the hotline

0121 331 6777

See hotline opening hours.

Please note: the entry requirements listed below are relevant for main cycle applications and may not be applicable during Clearing.

Overview

Want to become a Civil Engineer? Study our Civil Engineering degree course with a foundation year. This course, designed to meet the requirements of relevant professional bodies, will give you the best start to your career in civil engineering.

Much of your learning activity will be hands-on, with access to our strong industry links. You’ll also be provided with the latest CAD software, meaning you’ll be well equipped to make an impact in an important industry.

The Foundation Year course option enables you to study for our BEng (Hons) degree over an extended full-time duration of four years by including a Foundation Certificate (year one of four) in your studies. The Foundation Certificate provides a broad study programme that underpins the follow-on degree. In order to progress to the next year of the degree, it is necessary to achieve a pass in all modules of the Foundation Certificate.

This course is open to International students.

What's covered in this course?

Civil engineers build power stations, bridges and motorways; our course will prepare you to work on these projects. You will focus on hydraulics, examining how water flows and drives turbines, and your studies will be enhanced through site visits, field trips and guest lectures.

On this course you will develop the key transferable skills that modern employers require, such as problem solving, project planning, presentation and communication. Our strong links to industry enable you to apply your learning to problem-based scenarios, ensuring your intellectual and practical competencies are fully developed.

You’ll experience a unique simulated workplace and work towards a successful career as a chartered civil engineer.

The team was impressed with BSc vocational education available … and it was noted that these programmes are well respected and serving industry needs. Joint Board of Moderators

Why Choose Us?

  • Professional placement option – Gain desirable employability skills with the option of a professional placement.
  • Employable graduates - Our graduates work for companies such as Balfour Beatty and Cancer Care, in management roles such as construction managers or design engineers.
  • Study at the heart of Britain’s Second City - Some of the UK’s most exciting infrastructure projects such as HS2, are taking place right on our doorstep.
  • A well-established provider - The faculty has a reputation as the West Midlands' chief hub of knowledge, technology and skills-transfer into industry. The course is supported by dedicated teaching staff and expert industry speakers.
  • State-of-the-art course content and facilities - Incorporating the latest in research and industry practice. You will be based at our Millennium Point campus in City Centre, where our facilities have undergone a £6.5 million investment to provide you with the best learning experience.
  • Travel Scholarships - Opportunities to secure funding to gain experience overseas. Read about travel scholarships here.
  • We are an Autodesk Training Centre (ATC) -This national and international recognition will give you access to on-campus training by certified Autodesk instructors, providing you with digital skills that will be highly sought after by employers. Autodesk applications play an important part in supporting the digital transformation of Architecture, Engineering and Construction.

Entry Requirements

72 points
(or equivalent) is the minimum you will need to be considered for this course in Clearing.
Use the UCAS Tariff Calculator to work out your points.

Apply nowCall the hotline

0121 331 6777

See hotline opening hours.

We accept a range of qualifications, the most popular of which are detailed below.

Essential Requirements

BB or 80 UCAS tariff points

A maximum of 3 subjects are considered. These can be other A-levels or level 3 equivalents.

LEVEL 2 QUALIFICATIONS
GCSE
  • GCSE English language and mathematics at grade C/4 or above/li>
  • Equivalent level 2 qualifications can be accepted.
  • Must have been achieved at the point of enrolment
Irish Leaving Certificate (Ordinary Level)
  • See level 3 entry under Irish Leaving Certificate for full details
Scottish Intermediate 2
  • English language and mathematics at grade C or above
  • Must have been achieved at the point of enrolment
Scottish Credit Standard Grade
  • English language and mathematics at grade 2 or above
  • Must have been achieved at the point of enrolment
Scottish National 5
  • English language and mathematics at grade C or above
  • Must have been achieved at the point of enrolment
Plus one of the following Level 3 (and above) Qualifications
A level and Advanced VCE
  • 80 UCAS points
  • A maximum of 3 subjects are considered. These can be other A-levels or level 3 equivalents.
Access to HE Diploma
  • 60 credits overall. Minimum of 45 credits at level 3. Including 12 technical credits at Merit or Distinction..
  • Pearson BTEC National Extended Diploma
    (2016 – present)
  • Pearson BTEC Extended Diploma (QCF)
    (2010 - 2016)
  • BTEC Level 3 National Diploma
    (2002 – 2010)
  • MMP
  • Pearson BTEC Level 3 National Diploma
    (2016 – present)
  • Pearson BTEC Diploma (QCF)
    (2010 – 2016)
  • BTEC Level 3 National Certificate
    (2002 – 2010)
  • 80 UCAS points
  • Considered with one A-level or an equivalent level 3 qualification
  • Pearson BTEC National Foundation Diploma (2016 to present)

  • Pearson BTEC 90-Credit Diploma (QCF) (2010 - 2016)

  • 80 UCAS points
  • Considered with one A-level or an equivalent level 3 qualification
  • Pearson BTEC Level 3 National Extended Certificate
    (2016 – present)

  • Pearson BTEC Subsidiary Diploma (QCF)
    (2010 - 2016)

  • BTEC Level 3 National Award
    (2002 - 2010)

  • 80 UCAS points
  • Considered with one A-level or an equivalent level 3 qualification

Advanced Welsh Baccalaureate - Skills Challenge Certificate (first teaching September 2015)

  • 80 UCAS points

Welsh Baccalaureate Advanced Diploma – Core (awarded until 2016) ESW/KS Combined component

  • 80 UCAS points

International Baccalaureate Diploma

  • Obtain a minimum of 28 points overall and pass one of the following subjects from Group 4 at Higher Level (Computer Science, Chemistry, Design Technology, Physics)

  • For students who do not already hold a GCSE in Mathematics at Grade C/4 or above grade 5 in Maths (Standard Level) from the IB Diploma will be accepted

  • For students who do not already hold a GCSE in English Language at Grade C/4 or above Standard Level English Language (not literature) English A - Grade 4 or above or English B - Grade 5 from the IB will be accepted.

Other qualifications
If you have a qualification that is not listed in the table please refer to our full entry requirements on UCAS.

Further guidance on tariff points can be found on the UCAS website.
Additional information for EU/International students
Essential

Please see your country page for further details on the equivalent qualifications we accept.

In additional to the academic entry requirements listed above, international and EU students will also require the qualifications detailed in this table.

EU/Non-EU (International) Qualifications  
IELTS

6.0 overall with 5.5 minimum in all bands

If you do not meet the required IELTS score, you may be eligible for one of our pre-sessional English courses. Please note that you must have a Secure English Language Test (SELT) to study on the pre-sessional English course. More information.

International Baccalaureate Diploma (or equivalent, including internationally accredited Foundation courses).

1. For students who complete the full IB Diploma: a total of 14 points or above from three Higher Level Subjects.

2. Students who do not complete the IB Diploma will be considered on the basis of their IB Certificates.

Students must have grade 5 in Maths (Standard Level)
AND
English Group A - Grade 4 or above,
OR
English Group B and Ab Initio - Grade 5

Country-specific entry requirements and qualifications.

 

International students who cannot meet the direct entry requirements can begin their degree studies at Birmingham City University International College (BCUIC).

Additional Requirements

As part of the application process you will be invited to attend an applicant visit day where you will undertake a short one-to-one interview with an academic member of staff. This is your chance to show us how passionate you are about the subject and it will help us make a decision on your application.

This will provide you with more information about the School and your course. In addition, it will give you a chance to meet and our staff and students to gain a better understanding of what it is like to be a student here.

Fees & How to Apply

  • International students

Award: BEng (Hons)

Starting: Sep 2021

  • Mode
  • Duration
  • Fees

Award: BEng (Hons)

Starting: Sep 2021

  • Mode
  • Duration
  • Fees
  • Full Time
  • 4 years
  • £13,200 per year

If you're unable to use the online form for any reason, you can complete our PDF application form and equal opportunities PDF form instead.

£150 free credit (home/EU students only)

For 2021 entry, all new home/EU undergraduate students will receive £150 worth of free credit to spend in a host of ways, on books and a range of learning materials.

Access to computer equipment

You will require use of a laptop, and most students do prefer to have their own. However, you can borrow a laptop from the university or use one of our shared computer rooms.

Printing

You will receive £5 print credit in each year of your course, available after enrolment.

Access to Microsoft Office 365

Every student at the University can download a free copy of Microsoft Office 365 to use whilst at university and for 18 months after graduation.

Key Software

You will be able to download SPSS and Nvivo to your home computer to support with your studies and research.

Key subscriptions

Subscriptions to key journals and websites are available through our library.

Free access to Rosetta Stone

All students can sign up to the online learning language platform for free through the Graduate+ scheme.

Specialist Software

Using our Windows Virtual Desktop (WVD) you will be able to use many specialist software applications on your personal device, as well as devices on-campus such as free access to Engineering Simulation Software (ANSYS).

Memberships

Free student membership to the Institution of Civil Engineers (ICE) is provided on this course.

Project materials (mandatory)

This course includes project work that requires you to develop and produce a portfolio or collection. You'll be expected to provide the materials for use in your individual major projects; costs will vary depending on the materials selected.

Clothing and safety equipment (mandatory)

This course requires the purchase of a lab coat and safety boots in order to use the workshop facilities. These items cost approximately £40 together and we can advise where to purchase items.

Media consumable items (mandatory)

This course requires the use of consumables.

Excess printing (optional)

Once you have spent your £5 credit, additional printing on campus costs from 5p per sheet.

Books (optional)

Some modules may suggest that you purchase a key textbook. All module key texts will be in the University library, but in limited numbers. Many students choose to purchase a copy.

Placement expenses (optional)

If you choose to undertake a placement, you'll need to budget for accommodation and any travel costs you may incur whilst living or working away from home.

Accommodation and living costs

The cost of accommodation and other living costs are not included within your course fees. More information on the cost of accommodation can be found in our accommodation pages.

Field trips (optional)

This course may involve local site visits relating to essential module coursework where you would pay transport costs to and from the site. This course may also include the option of additional trips to complement your studies; these would be at extra cost.

72 points
(or equivalent) is the minimum you will need to be considered for this course in Clearing.
Use the UCAS Tariff Calculator to work out your points.

Apply nowCall the hotline

0121 331 6777

See hotline opening hours.

Please note: the entry requirements listed below are relevant for main cycle applications and may not be applicable during Clearing.

Course in Depth

Foundation Year

In order to complete this course a student must successfully complete all the following CORE modules (totalling 120 credits).

Mathematics plays a key role in establishing and grounding the professional skills of an engineer. Communicating the ideas of engineering is made both easier and harder by the use of mathematical language.

This module aims to help you become proficient at developing engineering models and arguments, and following them through to their logical conclusions, since application of these arguments has to include their interpretation both to and from the mathematical language.

Mathematics plays a key role in establishing and grounding the professional skills of an engineer. Communicating the ideas of engineering is made both easier and harder by the use of mathematical language.

This module aims to help you become proficient at further developing engineering models and arguments, and following them through to their logical conclusions, since application of these arguments has to include their interpretation both to and from the mathematical language.

This module aims to provide you with the practical and professional skills to enable you to progress to the next module in the practical theme, Practical Skills II, and then on to the first year of an engineering degree. The theoretical aspects of physical science and maths are delivered in another theme of the foundation year. The Practical Skills modules sit alongside these and concentrate on the practical aspects to support your learning.

This module aims to provide the practical and professional skills to enable you to progress to the first year of an engineering degree. As the theoretical aspects of physical science and maths are delivered in another theme of the foundation year, the Practical Skills modules concentrate on the practical aspects.

The subject material will be delivered in three coherent streams one of which contains predominantly mechanical and electrical laboratory exercises, a second PC-based stream will include use of software to support project planning, communication and analysis and the third, a project space where you will have the opportunity to integrate learning from across all elements of the semester.

The module aims to provide you with the knowledge and problem solving skills in physical science to enable you to progress to the next module in the science theme, Foundation Science II, and then on to the first year of an engineering degree.

As the practical aspects of physical science are delivered in another theme of the foundation year, the Foundation Science modules concentrate on the theoretical aspects. The subject material will be delivered in two coherent streams, one of which contains predominantly mechanical science and the other predominantly electrical science.

The module aims to provide you with the knowledge and problem solving skills in physical science to enable you to progress to the first year of an engineering degree. The science theme contains the material normally encountered in an A level physics course which is relevant to entry to an engineering degree. As the practical aspects of physical science are delivered in another theme of the foundation year, the Foundation Science modules concentrate on the theoretical aspects.

Year One

In order to complete this course a student must successfully complete all the following CORE modules (totalling 120 credits).

The module aims to provide the underpinning knowledge and problem solving skills in engineering science to enable you to progress to the next module in the theme, Engineering Principles II, and then on to the second year of a range of engineering degrees.

As the practical aspects of engineering science are delivered in another theme of the common first year, the Engineering Principles modules concentrate on the theoretical aspects. The subject material will be delivered in two coherent streams one of which contains predominantly mechanical science and the other contains predominantly electrical science.

The module aims to provide the underpinning knowledge and problem solving skills in engineering science to enable you to progress to the second year of a wide range of engineering degrees.

As the practical aspects of engineering science are delivered in another theme of the common first year, the Engineering Principles modules concentrate on the theoretical aspects. The subject material will be delivered in two coherent streams one of which contains predominantly mechanical science and the other contains predominantly electrical science.

Mathematics plays a key role in establishing and grounding the skills of an engineer, and the ability to communicate the ideas of engineering that are expected of an engineering graduates.

The primary aim of this module is to provide the fundamental mathematical knowledge and techniques needed in order to enable you to use and apply such mathematical techniques for the evaluation, analysis, modelling and solution of realistic engineering problems. Application of these data sets has to include their interpretation both to and from the mathematical language. In addition, this module will introduce students to mathematical modelling software package. This will be used to plot, annotate basic signals and write simple programs to compute mathematical problems.

This module will develop your ability to both work on and communicate engineering realities to a wider audience, at a professional standard.

This module will focus on introducing and building on well-established techniques for mathematically modelling dynamic systems (systems of interest for engineering) for contextualised engineering applications. The module will include an introduction to sophisticated signal analysis technique, Fourier series which is used to transform time-domain signals into their frequency spectra. The module is structured to include a mixture of lectures, tutorials and PC-based laboratories. The lectures will formally introduce material, in tutorials students will work through questions with tutor. The PC laboratories will involve using mathematical modelling software packages to implement mathematical operations.

The module aims to provide the practical and professional skills to enable you to progress to the next module in the practical theme, Practical Skills II, and then on to the second year of an engineering degree. As the theoretical aspects of physical science and maths are delivered in other themes of the first year, the Practical Skills modules concentrate on the practical aspects.

The subject material will be delivered in three coherent streams one of which contains predominantly mechanical and electrical laboratory exercises, a second PC-based stream will include use of software to support project planning, communication and analysis and the third, a project space where you have the opportunity to integrate learning from across all elements of the semester.

The module aims to provide the practical and professional skills to enable you to progress on to the second year of an engineering degree. As the theoretical aspects of physical science and maths are delivered in other themes of the first year, the Practical Skills modules concentrate on the practical aspects.

The subject material will be delivered in three coherent streams one of which contains predominantly mechanical and electrical laboratory exercises, a second PC-based stream will include use of software to support project planning, design, communication and analysis and the third, a project space where you have the opportunity to integrate learning from across all elements of the semester.

Year Two

In order to complete this course a student must successfully complete all the following CORE modules (totalling 120 credits).

In accordance with the programme philosophy and aims, this module has been designed to enable students to use problem-based learning to understand the core principles of structural analysis as relating to buildings and other structures.

The module follows the Civil Engineering programme philosophy of developing the intellectual and practical competence of students in technical, economic and theoretical aspects of civil engineering. Similarly the learning and teaching philosophy incorporates learning through formal lectures including presentations, seminars, tutorials and problem based scenarios, backed up by visits to construction sites and exhibitions when appropriate. Learning is practice-based, knowledge applied, work related and includes project based activities.

In accordance with the programme philosophy and aims, this module has been designed to enable you to use problem-based learning to understand the geological materials and effects of soil mechanics on Civil Engineering and relate it to information about the geotechnical tests and reports. It includes opportunities to complete laboratory tests to define certain properties of soils.

The module follows the Civil Engineering programme philosophy of developing your intellectual and practical competence in technical, theoretical and environmental aspects of civil engineering. Similarly the learning and teaching philosophy incorporates learning through formal lectures including, seminars, tutorials, laboratory tests and problem based scenarios. Learning is practice-based, knowledge applied and work related including project based activities.

The module introduces the mathematical concepts such as transform calculus and matrix theory used to solve systems of first and second order differential equations underpinning the engineering disciplines undertaken within the Faculty.

This provides you with the capability of modelling systems using both the transfer function and statespace paradigms. In particular, you will be able to model linear systems in continuous and discrete time as well as by frequency response methods.

Teaching and assessment will comprise not only traditional lectures and tutorials but also provide training in industry standard software for problem solving within coursework assessment.

In accordance with the programme philosophy and aims, this module has been designed to enable students to use problem-based learning to understand the properties, behaviour, and uses of materials of Civil Engineering. The module follows the Civil Engineering programme philosophy of developing your intellectual and practical competence in technical, theoretical and environmental aspects of civil engineering.

The learning and teaching philosophy emphasises practical work. Laboratory activities consist a major part of the module, covering all common Civil Engineering materials. These are supplemented by seminars, group work activities, and problem-based scenarios. Students are encouraged to plan their own work schedules, manage their time and extend their presentational skills.

In accordance with the programme philosophy and aims, this module has been designed to enable you to use problem-based learning to understand the Technology of Civil Engineering and innovations now being applied. It investigates a civil engineering project from its inception to its construction and identifies the methods and techniques used in constructing a range of structures and infrastructure.

Building Information Modelling (BIM) is an intelligent 3D model-based process that provides built environment professionals with the insight and tools to help plan, design, construct, and manage buildings and infrastructure. In this module, you will be encouraged to explore the potential of BIM in helping to understand the social, economic and environmental benefits associated with co-ordinated infrastructure and complex structure development.

Year Three

In order to complete this course a student must successfully complete all the following CORE modules (totalling 120 credits).

In accordance with the programme philosophy and aims, this module has been designed to enable learners to use problem-based learning to understand the theories and applications of hydraulics in civil engineering, including flow of fluids and theories relating to pumps, many demonstrated through laboratory experiments. Theories are then practically applied drainage system design.

In accordance with the programme philosophy and aims, this module has been designed to enable you to use problem-based learning to understand theories of geotechnics and their application to design and construction of civil engineering projects. It will enhance their knowledge and ability to work in teams and lead teams including the aptitude to work independently and understand the importance of being a reflective and innovative professional.

In accordance with the programme philosophy and aims, this module has been designed to enable students to use problem-based learning to understand the Structural Design process and relate it to information previously learned in Structures 1 and Civil Engineering Materials.

The module covers both analytical and numerical modelling of structures in order to provide the background for the students to produce the structural design of a small building. The effect of loading combinations is addressed utilising the approach specified in British Standards and European Norms. Aspects of analytical modelling are considered for structural design to the Eurocodes, utilising the UK National Annexes, for the common structural materials. Numerical aspects are covered via the Finite Element Method (FEM) and related software.

In accordance with the programme philosophy and aims, this module has been designed to enable students to use problem-based learning to understand the philosophy and application of a range of advanced methods employed in the analysis and design of Civil Engineering projects.

The module follows the Civil Engineering programme philosophy of developing the intellectual and practical competence of students in technical, economic, theoretical and environmental aspects of civil engineering. Similarly the learning and teaching philosophy incorporates learning through formal lectures, seminars, tutorials, and problem-based scenarios, backed up by guest speakers when appropriate.

The purpose of the module is to enable you to undertake a sustained, in-depth and research-informed project exploring an area that is of personal interest to you. In agreement with your supervisor, you will decide upon your topic which will take the form of a practical outcome (artefact) with accompanying contextual material. The main consideration when choosing your topic is that it must be aligned to the programme you are studying, and you should consider the relevance of this topic to your future academic or professional development.

At this level, you will be expected to work independently but you will receive additional one-to-one support from your supervisor, who will be familiar with your chosen topic area. As you progress on the module, extra support will be available and this may take the form of group seminars, workshops and online materials that will help to develop your project.

Assessment is split into 50 per cent exams and 50 per cent coursework.

We will enhance your knowledge and understanding through formal lectures, presentations, seminars, tutorials, hands-on experience and problem-based scenarios. Guest speakers, as well as visits to construction sites, manufacturers and exhibitions, will give you valuable insight and experience of the industry.

You will be assessed through work-related learning and problem solving, in-class tasks, seminar work, peer assessment and learning sets, while summative assessment is provided in projects, presentations, time-controlled assignments and end examinations.

In your final year, you will conduct an individual project, where you will hone and enhance your organisational, research and time management skills.

Attendance requirements

For more information on attendance requirements, course contact time and suggested self-study hours, download the course specification.

Employability

We will develop the skills, understandings and personal attributes that will help you stand out from the crowd when it comes to securing employment.

We will ensure you are professional, work-ready and enterprising, with a global outlook and the ability to solve problems creatively.

This course has been mapped against the UKSpec subject benchmarks for engineering, and we will support you to work towards a range of competencies linked to these benchmarks. We will also support your readiness for work by offering placements, where you can gain vital work experience in a real-life business.

Birmingham City University also has the Graduate+ scheme, an extracurricular programme which has been designed to hone the subject-based skills you develop throughout the programme alongside broader employability skills. You’ll develop skills in CV writing, presentations, a portfolio and more.

Placements

The Faculty has committed to ensuring that all students who would like to take out a third year in industry will be provided with that opportunity. This is not compulsory, but certainly is recommended since this can have positive implications for your future employability and sometimes even provides sponsorship.

With the advantage of a construction site right on our doorstep as the University grows, students and graduates have benefited from placements and hands-on experience.

You will also benefit from the innovative Building Birmingham Scholarship programme. Launched by Birmingham City Council, it supports young people wishing to pursue a career in construction.

More about our placement opportunities

OpportUNIty

OpportUNIty Student Ambassador

OpportUNIty: Student Jobs on Campus ensures that our students are given a first opportunity to fill many part-time temporary positions within the University. This allows you to work while you study with us, fitting the job around your course commitments. By taking part in the scheme, you will gain valuable experiences and employability skills, enhancing your prospects in the job market.

It will also allow you to become more involved in University life by delivering, leading and supporting many aspects of the learning experience, from administration to research and mentoring roles.

International Students

Birmingham City University is a vibrant and multicultural university in the heart of a modern and diverse city. We welcome many international students every year – there are currently students from more than 80 countries among our student community.

The University is conveniently placed, with Birmingham International Airport nearby and first-rate transport connections to London and the rest of the UK.

Our international pages contain a wealth of information for international students who are considering applying to study here, including:

Facilities and Staff

Our Facilities

This course will be taught at Millennium Point at the City Centre Campus. We offer a wide range of technology to help you with your studies.

We have an ongoing strategy to upgrade and further develop our well-equipped laboratories. These plans are supported by global technology providers such as PTC and Technosoft. These two companies alone have recently donated more than £11 million worth of computer aided design, product lifecycle management and knowledge-based engineering software.

In addition, more than £750,000 worth of capital investment has been made in upgrading our engine emissions test facilities, environmental laboratory and thermodynamics equipment.

Test Cell Facilities

The key features of our test cell include:

  • 340 kW fully transient dynamometer
  • Full exhaust gas analysis both pre and post after treatment system
  • Ammonia slip analyser, EGR CO2, THC and non-methane HC

Exhaust Analysis

The key features of our exhaust analysis facilities include:

  • Signal Group Analysers in 3 racks with heated sample systems
  • Sierra BG-3 particulate mini-tunnel
  • AVL 415S smoke meter

Environmental Lab

The environmental lab is part of the Centre for Low Carbon Research (CLCR) and is home of the bioenergy and bioprocessing research group at the Faculty of Computing, Engineering and the Built Environment.

The suite is divided into three main areas a wet lab/pilot facility a fully equipped analytical suite and a microbiological lab. This newly refurbished facility offers state of the art analysis and testing of environmental samples as well as scientific evaluation of lab scale and pilot scale technologies and processes.

More about our facilities

Our staff

Antony Taft

Senior Lecturer

Antony is a Senior Lecturer in the Birmingham School of the Built Environment and Course Director for HNC Construction.

During over 33 years in the construction industry Antony has worked for Local Authorities, Developers, Civil Engineering Consultants ultimately as the Associate Director of a multi-national consultants and finally in the education sector. A period was spent in Nigeria working on social development projects.

More about Antony