
1

Investigating the Security Aspect of Software Defined Networking

(SDN)

 Aliyu Lawal Aliyu, Peter Bull & Ali Abdallah

School of Computing, Telecommunications and Networks

Faculty of Computing, Engineering and the Built Environment,

 Birmingham City University

E-mail: aliyu.lawalaliyu@mail.bcu.ac.uk

Abstract: The complexity associated with current networks is quite

restrictive. New network applications cannot be deployed without major

network disruption and associate cost. Policy implementation and

management of large networks becomes a tedious task with heterogeneous

devices that are physically distributed. And to keep in pace with recent

advances in network technology a lot is spent in capital expenditure and

operational expenditures. These make the network evolve more slowly. A

new network paradigm called software defined networking (SDN) is set to

address most of these issues by separating the vertical integration between

the control logic and the forwarding function, thereby making networks

programmable to suit application needs and foster network evolution.

SDN reduces network complexity and make networks more flexible,

providing a logically centralised controller that manages physically

distributed systems across the network. SDN emerged from projects on

control to data plane separation and programmable networks. But the

separation of the control logic from forwarding functions introduced new

threats, not present in traditional networks. There is a need to mitigate

these new threats and ensure availability and dependability, in order to

fasten the transition of traditional network to SDN. This paper gives a brief

history of projects that led to realisation of SDN and a layered security

aspect of SDN is presented focusing on vulnerabilities that exploit the

communication channel between logically centralised controller and

underlying forwarding element.

Keywords: Software Define Networks, Architecture , Security and

Programmable networks

Introduction

The pace at which networking

technologies evolve is claimed by Jarraya

et al. (2014) and Ghodsi et al. (2011) to be

slow as compared to other communication

technologies. Similarly Kreutz et al.

(2014a) and Huang et al. (2013a) state that

the slow evolution stems from vendors

producing proprietary firmware and

protocols that communicate only with their

products. This leads to a more closed

communication environment which

hinders innovation and creativity in

networking technologies. Huang et al

(2014b) and Benson et al (2009) lament

that the architectural choices made by

12

vendors make it difficult for new network

applications and services to be integrated

in to the existing network infrastructure

without additional capital, operational and

management cost.

Due to these restrictive behaviours Latifi

et al. (2014) and Hamadi et al. (2014) state

that researchers and network operators

have been looking for a solution that will

give them optimum flexibility and control

of their network independent of vendor

specifications and limitations by protocols.

Several authors, including Huang et al.

(2014b) and Ahmed and Boutaba (2014)

pinpoint that the reason behind the

limitations of the current networks lies

within the vertical integration of the three

logical planes in networking devices which

are management, control and data as

shown in Figure 1. This vertical

integration is constricting, because the

control plane that makes the decision on

how to handle network traffic is tightly

coupled with the data plane which form

the (infrastructural layer), and this layer

works based on the decision made by the

control plane. The management plane

include programs and utilities like Simple

Network Management Protocol (SNMP)

and Secure Shell (SSH) that are used

remotely to configure and monitor

networks.

Figure1: Conventional network (Kreutz et

al., 2014a)

A promising solution to these problems

shown by several authors, including

Huang et al. (2013a); Kreutz et al.

(2014a); Shin and Gu (2013) and Hamadi

et al. (2014), is a new network paradigm

called Software Defined Networking

(SDN) which revisits the logical

architecture of networking device and

decouples the vertical integration that

bundled the control and data plane

together thereby providing scalability,

flexibility, manageability, and reduce

operational and capital expenditure cost.

As described by Jain et al. (2013), the

vertical integration which bundled the

network intelligence and semantics to the

networking devices in the data plane is

now separated, as shown in Figure 2, and

the intelligence is handled by a logically

centralised controller in the control layer.

Figure 2: SDN Network breaking vertical

integration

As stated by Ahmed and Boutaba (2014)

the full architecture of SDN comprises

additional sub-interfaces between the

major layers, called the southbound

interface and northbound interface. The

southbound interfaces sits between the

control and infrastructural layer while the

northbound interface lies between the

control and application layers. Jarraya et al

(2014) note that for high availability and

scalability implementation, westbound and

12

eastbound Application Programming

Interfaces (APIs) exist that allow multi-

domain network control. Figure 4 shows

the complete architecture of SDN.

According to Mckeown et al. (2008) and

Feamster et al. (2013), the controller

programs the data plane devices in the

infrastructural layers through the

southbound interface. Many protocols are

available in the south band interface that

encapsulate the messaging signal between

the control layer and infrastructural layer.

Kreutz et al. (2014) described these

protocols, examples are Openflow,

Revised Openflow Library (ROFL),

Opflex, Openstate, Forwarding and

Control Element Separation (FORCES),

Protocol Oblivious Forwarding (POF),

Path Computation Element Protocol

(PCEP) and Open Virtual Switch Database

(OVSDB). Figure 3 shows some of the

supported protocols in the southbound

interface.

Figure 3: Southbound Interface protocols

Of the many available protocols, the de

facto and industry standard protocol used

for network programmability, as

mentioned by Kloti et al. (2013) and Scott-

Hayward et al (2013) is the openflow. The

protocol has a large community support

base of network researchers, academia,

enterprise and individuals that contribute

toward its standardisation and application

in network control and operations. On the

other hand the northbound API does not

have a standardised interface for network

orchestration but makes use of the REST

API to push network application

requirements like routing, load balancing

and firewall (Fw), Intrusion Detection and

Prevention system (IDPS) through the

controller. The controller translates those

requirements into commands to the

forwarding elements.

Figure 4 presents the SDN architecture.

Figure 4: SDN Architecture Jarraya et al.

(2014).

The separation and programmablity which

is new to communication networks

introduced some vulnerabilities which

were not present in traditional networks as

explained by Shin and Gu (2013) and Kloti

et al (2013). Furthermore, Kreutz et al.

(2013b) note some new threats that arise

due to introduction of new entities in the

network by SDN. These threats impede the

transition of enterprise, organisations,

academia etc. to migrate fully into SDN.

12

The International Data Corporation (IDC)

shows that thte SDN global market will

rise from $960 million in 2014 to $8billion

in 2016, however the critical factor to

reach this target lies within the maturity of

SDN which include security,

interoperability, reliability and

advancement in design and

implementation of various SDN

components.

History of Software Defined Networking

(SDN)

The idea of SDN stems from two main

projects which are control to data plane

separation and programmable networks

(Feamster et al. 2014, Jarraya et al. 2014).

Most of the work in the various projects

was independent but complementary,

because the main driver is to have a

network that provides optimum control

while still maintaining efficiency,

performance and scalability. The project

came about because of the constricting

nature of conventional networks where

orchestration, network flexibility,

maintenance and operation are costly,

cumbersome, tedious and difficult to

attain.

Control to Data Plane Separation Projects

According to Kreutz et al. (2014a), the

earliest projects that advocated control-

data plane separation are Network Control

Point (NCP), Routing Control Platform

(RCP), Secure Architecture for Network

Enterprise (SANE) and Ethane. These will

be discussed separately.

Network Control Point (NCP)

NCP is one of the first initiative to

separate control from the data plane, as

mentioned by Sheinbein and Weber

(1982). It was introduced by the

telecommunication company AT&T in the

early 1980s. NCP helps reduce network

complexity and ease management by

providing a global view of the network.

Likewise Feamster et al (2004) add that

NCP supports rapid introduction of new

services.

Routing Control Platform (RCP)

Caesar et al. (2005) mentioned that RCP

provides a logically centralised framework

through which optimal route selection is

carried out on behalf of routers and

selected routes are forwarded to the

routers. This ability helps in reachability

exchange between multiple domains to

enable scalability and evolution of routing

architecture. However, Feamster et al.

(2004) point out that RCP uses Border

Gateway Protocol (BGP) to install routing

paths in routers, which allows immediate

deployment and serves as a logically

centralised proxy for route injections in

routers only. But Greenberg et al. (2005)

claim that RCP considers only BGP which

is a single protocol that is part of the data

plane which has other protocols that

forward traffic through the network.

Secure Architecture for Network

Enterprise (SANE)

SANE is an architecture that deals with

security aspect of a separate control and

forwarding framework as claimed by

Scott-Hayward et al. (2013). SANE

enforces security policies like Intrusion

detection, firewall, access control etc. in

network through a logically centralised

server situated in a single protection layer

(Jarraya et al., 2014). Moreover Feamster

et al (2013) state that SANE produce a

logically centralised flow-level solution

for access control in an enterprise network.

However Casado et al. (2006) point out

that, at the time of its proposal, SANE was

considered as an extreme approach to

enterprise because a logical centralised

12

controller is responsible for policy

enforcement and host authentication.

ETHANE

ETHANE built on SANE adds two

components the first of which is the

controller that has a global view of the

network topology with the corresponding

network policy and the second component

comprises of simple Ethane switches that

receive flow information through a secure

channel from the controller (Feamster et

al., 2013). According to Mckeown et al.

(2008), the deployment of Ethane in

Stanford University set the ground for

creation of Openflow, which is the key

enabler of SDN functionality. But Scott-

Hayward et al (2013) highlight the

drawback of Ethane where application

traffic can compromise network policy.

Summary

SDN leverages from most of these projects

like the global view of the network

provided by SDN is an initiative of NCP

and Ethane. The logical centralisation of

controller and network security policy for

flow rule insertion was inherited by SDN

from Ethane, RCP and SANE. However

Feamster et al. (2013) pinpoint that all the

efforts of control-data plane separation

projects depend solely on existing routing

protocols. Much of the needed

functionalities required for flexibility like

dropping, flooding or modifying of

packets are absent and they do not allow

for matching of the header field. These

imposed limitations on the side of

programmable controllers to support range

of network applications. SDN differs in

that it provides a protocol independent

forwarding, and is not centred toward

solving problems of a specific network

architecture, which is the case in many

control–data separation projects like NCP

and RCP. It is a holistic approach that can

be used to solve network problem across

all network architectures including cloud

architectures, mobile telecommunication

networks and broadcast networks.

Programmable Network Projects

The principal idea of programmable

networks is to realise a dynamic, flexible

and customisable network Van der Merwe

et al., 1998). The main programmable

network projects are active networks from

computer networks and opensignalling

(OpenSig) from telecommunication

networks (Jarraya et al., 2014). The idea of

programmability complements separation

of the two planes because separation

decouples the control logic from data

while programmability allows the control

logic to define network requirement

globally in terms of instructional codes

and send them down to forwarding

elements in other to control packet flows

and network operation.

Active Networks

The idea of active networks emerged in

1994 from the United States Defence

Advanced Research Projects Agency

(DARPA) in their quest to determine the

future direction of networking systems.

Lazar et al. (1996) described active

networks as a novel approach to network

architecture where networking devices

carry out customised computations on the

traffic flowing through them. After

execution, the behaviour of the networking

device changed and provided different

level of fine-grained control. In addition,

active networks allow for new network

service deployment at run time which

gives it a high level of dynamism. The

implementation of active networks is seen

in the project of Tennenhouse (1997)

where nodes can compute or modify

content of a packet. The approach uses

programmable switches and capsules. The

12

former do not affect or change existing

packets and support switching devices that

are cable of accepting programmes and

with corresponding instructions on how

packets should be processed. The latter

suggest that tiny programs should replace

packets which are encapsulated in

transmission frames and executed at each

node along their path.

Open signalling (OpenSig)

OpenSig proposed to control networks

through a set of well-defined

programmable network interfaces and

distributed programming environments

(Campbell et al. 1998). The principle

behind it is to make networks

programmable like personal computers

(PCs), thereby allowing flexible

deployment of new network services (e.g.

mobility management, routing, handover

etc.). This paved the way for third-party

software providers to enter the market.

However Jarraya et al (2013) justify why

OpenSig suffers in the hands of vendors

who are not willing to expose their

interfaces for third party software

programmability.

Summary

Limitations were introduced by Active

networks and OpenSig complexity, such as

isolation, performance and security issues.

They require nodes to process each packet

separately which bring performance

bottlenecks and also execution of code to

be performed at infrastructure level where

the network devices are not designed to

operate in that fashion unless they undergo

a major upgrade. The upgrades require

current network devices to add supported

functionalities necessary for

programmability and to provide high

processing in CPU which is costly,

disruptive and brings more power

dissipation in network devices. It also

requires redesigning of Application

Specific Integrated Circuit (ASIC) chipsets

which will complement the processes

needed by fine grained programmability. It

also depends on vendors being willing to

to expose their internal architectural

setting through some well-defined API and

drift away from a closed networking

system. This idea was rejected by major

vendors in the market which consequently

impedes industrial adoption and research

to go in that direction. SDN differs in the

sense that it does not require vendors to

expose their internal settings to provide

programmability. What is required from

the networking device is to provide

support for an SDN agent (e.g openflow)

and the network will be customisable to

suit operator needs. SDN does not require

per device computation which brings

additional overhead. Instead, the

functionality is delegated to an external

controller and the networking devices are

just passive hardware gears with

forwarding capability based on instruction

sets defined by the centralised controller.

Security Issues in SDN

Threat vectors and security weakness are

identified in SDN architecture (Kloti et al.

2013; Wasserman and Hartman, 2013).

However Shin and Gu (2013) argue that

only threat targeting control-data plane

communication are SDN specific; other

threat vectors only affect the conventional

networks. Kreutz et al. (2014) mentioned

that other threats are independent of

technology or protocol (e.g FORCES,

PCEP and OpenFlow) because they can be

found at different levels of SDN

architecture. As shown in Figure 5 there

are seven identified threat vectors. The

first indicates the possibility that bogus or

fake traffic can be generated to overwhelm

data plane device and controller by

intruder. The second exploits the

12

vulnerabilities in a networking device and

a lunch offensive attack against the

network. The third is SDN specific and

exploits the open communication channel

between controller and forwarding

elements to eavesdrop and monitor link

communication. The fourth is significant

and SDN specific because it exploits the

vulnerabilities in controllers to take over

the control function. A compromised

controller leads to the whole network

being compromised because the network

only responds to instruction sets defined

globally by the controller. The fifth is

SDN specific, which is malicious

applications that are developed and

deployed on SDN controllers. The sixth

arises due to compromise of the

management station on which the

controller runs, this indirectly

compromises controller operation. The last

threat is lack of remediation and forensics

in SDN networks which make it difficult

to recover after breach and trace intruders.

Table 1 provides the summary of the

different threat vectors.

Figure 5: Threat Vectors of SDN

Architecture (Kreutz et al., 2013b)

Table 1: Threat Vectors (Kreutz et al.,

2013b)

Since SDN is a new network paradigm at

an early stage with the potential of

becoming the next generation

communication network, much is expected

on the side of availability and

dependability (Ros and Ruiz, 2014). Scott-

Hayward et al. (2013) mentioned that

every secure communication network

should guarantee confidentiality, integrity,

availability, authentication and non-

repudiation. This cannot be achieved

without having concrete threat mitigation

techniques in SDN. We now discuss the

security issues in details with respect to

different layers of SDN architecture.

Infrastructural Layer

Denial of service attack seems to be most

feared at this layer (Kreutz et al., 2013b)

because an attacker (adversary) can take

over control of a device and use it to send

large amount of new packet flows that

require the attention of the controller. This

will stop the controller from responding to

legitimate new flow requests. Braga et al

(2010) state that most DoS attacks are

difficult to detect due to their similarities

with legitimate network traffic; hence they

provide a mechanism of traffic detection

using Self Organising Maps (SOM). SOM

is an artificial intelligence method that

12

uses traffic rate limiting mechanisms like

average of packets per flow and average of

bytes per flow to detect whether certain

traffic is fake or legitimate. However the

limiting factor of SOM is that it has to be

trained and be familiar with network

traffic.

According to Scott-Hayward et al. (2013),

another threat that resides within the

interface data and control layer can lead to

Man-in-the-Middle-Attack or

eavesdropping as shown in Figure 5.

However Benton et al (2013) claim that

the threat can be mitigated using Transport

layer Security (TLS) which installs a root

certificate that would establish a secure

protocol handshake between controller and

switch.

Figure 6: SDN Architecture with interface

between layers (Scott-Hayward et al.,

2013)

Control Layer

One of the well-known vulnerabilities at

this layer is compromising the controller

through a denial of service (DoS) attack,

which can have a catastrophic effect on the

entire network. To mitigate this issue Shin

et al (2013) proposed AVANT-GUARD,

which is a mechanism that stops control

plane saturation from the effect of TCP-

SYNC flood and network mapping. But

the framework failed to account for other

protocols such as User Datagram Protocol

(UDP) or Internet Control Message

Protocol (ICMP). However Kreutz, et al.

(2013b) suggest the replication of the

controller to allow for fault tolerance in

case the main controller is compromised.

This would increase availability and at the

same time provide security. Likewise to

maintain trust between controller and

switches, Benton et al. (2013) proposed

Flowvisor, which serves as a proxy

between the layers and rewrites flow rules.

Application Layer

As identified by Jarraya et al. (2014), the

vulnerability in this layer is the trust

between the controller and the application.

SDN operate policies that allow business

applications to apply changes in the

network and there are no formal

verification technique or semantics to

assess the trust of these applications.

Malicious applications can exploit this

vulnerability and disrupt network

operation. However, Porras et al. (2012)

proposed a security enforcement kernel

called FortNOX that addresses the issue of

trust by implementing a role-based

authentication mechanism and setting

severities between applications to restrict

privileges. In a different way Sonkoly et

al. (2012) and Sherwood et al. (2010) view

network virtualisation isolation as a slice

in the application layer as another

mechanism that contain threats in a single

slice and prevent security breaches from

propagating to other slices. The isolation

aids in threat containment, however

containment does not guarantee mitigation

- it only reduces the size of the affected

network slice.

Kloti et al. (2013) and Shin and Gu (2013)

identified that Openflow networks have

various dependability and security issues

12

like information disclosure, denial of

service and elevation of privileges.

However Bentont et al. (2013) and Porras

et al (2012) emphasised that the absence of

mitigation mechanisms like access control,

intrusion detection systems, isolation and

security recommendations is a major cause

of these vulnerabilities.

Conclusion

The research aims at providing a secure

control layer communication with data

plane devices and network applications.

There is a lack of counter security

measures in SDN architecture that can stop

denial of service (DoS) attack between the

control layer and the infrastructural layer,

and the architecture lacks mechanisms to

authenticate and dictate how applications

should behave in the network, because a

malicious application can take down the

entire network operation if allowed to run

without any form of access control. All

these problems arise due to the separation

of control from the data plane which,

consequently, introduced new threats.

Several authors make suggestions on how

the security issues should be dealt with but

most of their contributions lack

implementation and consideration; and the

SDN architecture still remains insecure.

From the literature, this research will try to

cover up the noticeable gap from previous

surveys and make the solutions practically

realisable to attain a more secure SDN

architecture.

References

Ahmed, R. & Boutaba, R. (2014) ‘Design

Considerations for Managing Wide Area

Software Defined Networks’,

Communication Magazine IEEE. Vol. 52,

No. 7, pp. 116–123.

Benton, K., Camp, L. J. & Small, C.

(2013) ‘OpenFlow vulnerability

Assessment’, Proceedings of the second

ACM SIGCOMM workshop on Hot topics

in software defined networking. New

York, NY: ACM pp. 151–152.

Benson, T., Akella, A., & Maltz, D. (2009)

‘Unravelling the Complexity of Network

Management,’ Proceedings of the 6th

USENIX symposium on Networked systems

design and implementation (NSDI'09).

Berkeley, CA: ACM pp. 335-348.

Caesar, M., Caldwell, D., Feamster, N.,

Rexford, J., Shaikh, A. & van der Merwe,

J. (2005) ‘Design and implementation of a

routing control platform’, Proceedings of

the 2nd conference on Symposium on

Networked Systems Design &

Implementation. Berkeley, CA: ACM.

Vol. 2, pp. 15–28.

Casado, M., Garfinkel, T., Akella, A.,

Freedman, M. J., Boneh, D. McKeown, N.

& Shenker, S. (2006) ‘SANE: A protection

architecture for enterprise networks’,

Proceedings of the 15th conference on

USENIX Security Symposium – Vol. 15,

No. 10. Berkeley, CA, USA: ACM pp. 1-

15

Campbell, A. T. (1998) ‘Open Signaling

for ATM, Internet and Mobile Networks

(OPENSIG'98)’ SIGCOMM Computer

Communication Review, Vol. 29, No.1, pp.

97 – 108.

DARPA (1997) ‘Active network program’

http://www.sds.lcs.mit.edu/darpa-

activenet/ Accessed: 30th December 2014

Feamster, N., Rexford, J. & Zegura, E.

(2014) ‘The Road to SDN’, SIGCOMM

Computer Communication Review Vol. 44

No. 2, New York, NY, USA: ACM. pp.

87-98

http://www.sds.lcs.mit.edu/darpa-activenet/
http://www.sds.lcs.mit.edu/darpa-activenet/

12

Greenberg, A., Hjalmtysson, G., Maltz, D.

A., Myers, A., Rexford, J., Xie, G., Yan,

H., Zhang, J. & Zhang, H. (2005) ‘A Clean

Slate 4D Approach to Network Control

and Management’, SIGCOMM Computer

Communication Review Vol. 35, No. 5, pp.

41–54.

Ghodsi, A., Berkeley, K. T. H. U. C.,

Shenker, S., Berkeley, I. U. C., Singla, A.

& Wilcox, J. (2011) ‘Intelligent Design

Enables Architectural Evolution’,

Proceedings of the 10th ACM Workshop

on Hot Topics in Networks. No. 3. New

York, NY: ACM pp. 1–6

Huang, W. Y., Liu, T. L.., Chou, T.-Y. &

Hu, J. W. (2014) ‘Automatical End to End

Topology Discovery and Flow Viewer on

SDN’, 28th IEEE International Conference

on Advanced Information Networking and

Applications Workshops, Victorian: IEEE

pp.910–915.

Huang, D. Y., Yocum, K., & Snoeren, A.

C. (2013) ‘High-fidelity switch models for

software-defined network emulation’,

Proceedings of the Second SIGCOMM

Workshop on Hot Topics in Software

Defined Networking. New York, NY:

ACM, pp. 43-48.

Hamadi, S., Snaiki, I., & Cherkaoui, O.

(2014) ‘Fast path acceleration for open

vSwitch in overlay networks’, Global

Information Infrastructure and

Networking Symposium (GIIS). Montreal,

QC: IEEE, pp.1–5.

IDC Corporate (2014) ‘Growing SDN

Momentum Presents Fresh Opportunities

for Data Center Networks’

http://www.idc.com/getdoc.jsp?containerI

d=prUS25052314 [Accessed 30th

December 2014].

Jain, S., Kumar, A., Mandal, S., Ong, J.,

Poutievski, L., Singh, A., Venkata, S.,

Wanderer, J., Zhou, J., Zhu, M., Zolla, J.,

Holzle, U., Stuart, S., & Vahdat, A.,

(2013) B4: experience with a globally-

deployed software defined wan, In

Proceedings of the SIGCOMM

conference, New York, NY, USA: ACM,

pp. 3–14.

Jarraya, Y., Madi, T., & Debbabi, M.

(2014). A Survey and a Layered

Taxonomy of Software-Defined

Networking. Communications Surveys &

Tutorials, IEEE vol. 16, no. 4, pp. 1955-

1980

Kreautz, D., Ramos, F.M.V., Verissimo,

P.E., Rothenberg, C.E., Azodolmolky,

S., Uhlig, S. (2014) Software-Defined

Networking: A Comprehensive Survey.

Proceedings IEEE Vol. 103, no. 1.pp 14-

76

Kreutz, D., Ramos, F. M. & Verissimo, P.

(2013) ‘Towards secure and dependable

software-defined networks;, Proceedings

of the second SIGCOMM workshop on hot

topics in software defined networking,

New York, NY: ACM, pp. 55–60.

Kloti, R., Kotronis, V. & Smith, P. (2013)

‘OpenFlow: A security analysis;

International Conference on Network

Protocols (ICNP). Goettingen, Germany:

IEEE, pp. 1 – 6

Lantz, B., Heller, B., & McKeown, N.

(2010) ‘A network in a laptop: rapid

prototyping for software-defined

networks’, Proceedings of the 9th ACM

SIGCOMM Workshop on Hot Topics in

Networks, No. 19. New York, NY: ACM,

pp.1–6.

http://www.idc.com/getdoc.jsp?containerId=prUS25052314
http://www.idc.com/getdoc.jsp?containerId=prUS25052314
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ramos,%20F.M.V..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Verissimo,%20P.E..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Verissimo,%20P.E..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Rothenberg,%20C.E..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Azodolmolky,%20S..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Azodolmolky,%20S..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Uhlig,%20S..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kloti,%20R..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kotronis,%20V..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Smith,%20P..QT.&newsearch=true

12

Latifi, S. & Durresi, A. (2014) ‘Emulating

Enterprise Network Environments for Fast

Transition to Software-Defined

Networking’, Mediterranean Conference

on Embedded Computing (MECO), Budva:

IEEE pp.294–297.

Lazar, A., Lim, K. S. & Marconcini, F.

(1996) ‘Realizing a foundation for

programmability of ATM networks with

the binding architecture, Journal on

Selected Areas in Communications, Vol.

14, No. 7, pp. 1214–1227.

McKeown, N., Anderson, T.,

Balakrishnan, H., Parulkar, G., Peterson,

L., Rexford, J., Shenker, S. & Turner, J.

(2008) ‘OpenFlow: enabling innovation in

campus networks’, SIGCOMM Computer

Communication Revolution, Vol. 38, No.

2, New York, NY: ACM pp. 69–74.

Porras, P. Shin, S., Yegneswaran, V.,

Fong, M., Tyson, M. & Gu, G. (2012) ‘A

security enforcement kernel for OpenFlow

network’, Proceedings of the First

Workshop on Hot Topics in Software

Defined Networks. New York, NY: ACM,

pp. 121–126.

Ros, F. J. & Ruiz, P.M. (2014) ‘Five nines

of southbound reliability in software-

defined networks’, Proceedings of the

Third Workshop on Hot Topics in Software

Defined Networking. New York, NY:

ACM, pp. 31–36.

Sherwood, R., Chan, M., Covington, A.,

Gibb, G., Flaislik, M. Handigol, N.,

Huang, T. Y. Kazemian, P., Kobayashi,

M., Naous, J. Seetharaman, S., Underhill,

D., Yabe, T., Yap, K.-K., Ylakoumis. Y.

Zeg, H., Appenzeller, G., Johari, R.,

McKeown, N., Parulkar, G. & Kobayashi,

M. (2010) ‘Carving research slices out of

your production networks with

OpenFlow’, SIGCOMM Computer

Communication Review, Vol. 40, No. 1,

New York, NY: ACM, pp.129-130.

Scott-Hayward, S., O’Callaghan, G., &

Sezer, S. (2013) ‘SDN Security: A Survey,

Conference of SDN for Future Networks

and Services (SDN4FNS), New York, NY:

IEEE pp.1–7.

Sheinbein, D. & Weber, R. P. (1982) ‘800

service using SPC network capability’,

The Bell System Technical Journal,

Alcatel-Lucent Vol. 61, No. 7. pp. 1745-

1757.

Shin, S. & Gu, G. (2013) ‘Attacking

software-defined networks: A first

feasibility study’, ACM Proceedings of the

second workshop on Hot topics in software

defined networks. New York, NY: ACM,

pp. 1–2.

Shin, S., Yegneswaran, V., Porras, P. &

Gu. G. (2013) ‘AVANTGUARD: Scalable

and Vigilant Switch Flow Management in

Software-defined Networks’, Proceedings

of the 2013 SIGSAC conference on

Computer & communications security.

New York, NY: ACM, pp. 413–424

Song, H. (2013) ‘Protocol-oblivious

Forwarding: Unleash the power of SDN

through a future-proof forwarding plane’,

Proceedings of the Second SIGCOMM

Workshop on Hot Topics in Software

Defined Networking. New York, NY:

ACM, pp. 127–132.

Sonkoly, B., Gulyas, A., Nemeth, F.,

Czentye, J., Kurucz, K., Novak, B., &

Vaszkun, G. (2012) ‘OpenFlow

Virtualization Framework with Advanced

Capabilities,’ Proceeding of the European

Workshop on Software Defined

Networking. Darmstadt: IEEE pp. 18–23.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6851984
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6851984

12

Tennenhouse, D. Smith, J. Sincoskie, W.

Wetherall, D. & Minden, G. (1997) ‘A

survey of active network research’,

Communications Magazine, Vol. 35, No.

1, pp. 80–86.

Van der Merwe, J., Rooney, S., Leslie, I.,

& Crosby, S. (1998) ‘The tempest

practical framework for network

programmability’, Network, Vol. 12, No.

3, pp. 20–28.

Wasserman, M. & Hartman, S. (2013)

‘Security analysis of the open networking

foundation (onf) OpenFlow switch

specification’, Internet Engineering Task

Force, April. [Online]. Available at:

https://datatracker.ietf.org/doc/draft-mrw-

sdnsec-openflow-analysis/ [Accessed 10th

December 2014].

https://datatracker.ietf.org/doc/draft-mrw-sdnsec-openflow-analysis/
https://datatracker.ietf.org/doc/draft-mrw-sdnsec-openflow-analysis/

