
3 
 

The Development of a Simulation Model for the Flexilink Protocol 

 

Dalia Hassan El-Banna, Yonghao Wang, Michael Clarke and Sharon Cox 

Faculty of Technology, Engineering & the Environment, 

Birmingham City University 

Corresponding e-mail sharon.cox@bcu.ac.uk  

 

    

Abstract: The Flexilink protocol has been proposed to support audio-

visual communication across the Internet.  The protocol aims to support 

low latency to reduce communication jitter and support different sampling 

frequencies.  This paper discusses real-time Ethernet protocols and 

presents a simulation model developed to evaluate the Flexilink protocol 

using the OMNeT++ simulation platform to simulate the behaviour of the 

Flexilink protocol over Ethernet networks. Simulation-based evaluation 

strategy enables the protocol to be evaluated by considering the effects of 

different parameters and different topologies, which would have been both 

time-consuming and costly if done using real hardware.  
 
Keywords: OMNeT++, Flexilink, Real-time, Protocol, Simulation, Low 

Latency, Audio-Visual Communication 
 

 

Introduction 

 

There is an increasing demand to support 

interactive audio/video media traffic over 

the Internet. Interactive audio/video 

communication is based on sending real-

time traffic. This type of traffic requires 

low latency in addition to preserving the 

time relationship between packets of the 

same flow (low jitter) (Austerberry, 2005). 

However, a connectionless packet 

switched network architecture with the 

current techniques used for QoS and traffic 

engineering, is not suitable for supporting 

this type of deterministic traffic especially 

when low latency and low jitter is required 

(Wang, et al., 2012).  

 

In 2010, the Flexilink protocol was 

introduced, offering a unified network 

solution to support both best effort traffic 

and low latency deterministic traffic (real-

time traffic) (Grant, 2010). In addition, 

Flexilink supports multi audio channels 

with different sampling frequencies and 

word lengths; a feature that is not available 

in current multiplexing schemes without 

sampling rate conversion and data format 

rectification (Wang, et al.,2012).  

 

This paper outlines the development of a 

simulation model for the proposed 

Flexilink protocol using OMNeT++ 

simulation platform to simulate the 

behaviour of Flexilink protocol over 

Ethernet networks. The following section 

reviews real-time Ethernet protocols to 

compare the features of the newly 

proposed Flexilink protocol with features 

of peer protocols in terms of providing 

real-time properties to widely used 

Ethernet networks. The design and 

implementation of custom Flexilink nodes 

in the OMNeT++ simulation platform is 

then discussed in section 3. Section 4 

evaluates the simulation model developed.  

The paper concludes by discussing future 

work to refine and validate the simulation 

model. 

 

mailto:sharon.cox@bcu.ac.uk


4 
 

Real-time Ethernet Protocols 

 

Being a newly introduced protocol, 

Flexilink does not have an extensive 

literature-base. However, a number of 

protocols have been developed to support 

both time-deterministic as well as best-

effort data in order to provide a unified 

platform for automation networks.  

Audio/video streaming requires the same 

time constraints in data transmission as 

industrial automation networks that 

involve real-time data transmission for 

safety critical applications. Thus some 

real-time Ethernet protocols have been 

used both in automation and audio/video 

streaming over Ethernet. As an example, 

IEEE 802.1 AVB has been validated in 

previous work to be used both in 

automation in future in-car networks 

(Steinbach et al., 2012), as well as in data 

steaming over Ethernet (Lim, et al., 2011). 

This section reviews some of the existing 

real time Ethernet protocols. 

 

 

Real-Time Ethernet Background 

 

Real-time electronic control systems have 

been employed to control and monitor 

safety-critical applications in the avionics 

and automotive industries. The demand for 

having physically distributed control in 

strict real-time requires network protocols 

that support stringent real-time 

requirements as well as a guarantee of 

service to ensure that they will always 

operate deterministically and correctly 

(Doyle, 2004). Ethernet was not suitable to 

provide this kind of networking, being non 

deterministic. As defined in IEEE 802.3, 

Ethernet uses CSMA/CD as a media 

access control protocol which results in 

possible failure of transmission and 

random delays due to the backoff 

algorithm. However, Ethernet technology 

has proven to be the most successful and 

dominant Local Area Network due to its 

flexibility and the fact that it is a highly 

scalable protocol. Also Ethernet is able to 

support the TCP/IP stack, which offers an 

attractive feature for existing automation 

networks in which devices can easily gate 

to the Internet. This feature allows remote 

monitoring and control of the network. In 

addition, Ethernet offers increased 

bandwidth compared to other real-time 

solutions such as PROFIBUS which 

offered 12Mbps compared to 100Mbps or 

probably 1Gbps offered by using Ethernet. 

These benefits increased the demand for 

developing protocols that provide real-time 

characteristics to the existing Ethernet 

standard. These newly developed set of 

protocols are referred to as Industrial 

Ethernet or Real-Time Ethernet. In the 

next section a critical literature review is 

conducted for some of the most used real-

time Ethernet protocols. A full list of real-

time Ethernet protocols can be found in 

Schwager (2003). 

 

 

2.2 Real-Time Ethernet Protocols 

 

Popp and Wenzel (2001) introduced 

PROFINET based on the IEEE 802.3 

Ethernet standard and is interoperable with 

TCP/IP. It was first used for distributed 

automation systems and was compatible 

with the existing standard used for 

interconnecting devices.  In PROFINET, 

different types of data are sent over the 

same channel using TDMA with a highly 

precise synchronized cycle based on the 

IEEE 1588 standard for precision clock 

synchronization protocol (Popp and 

Wenzel, 2001). 

 

Ferrari et al. (2004) evaluated the 

performance of real-time and non-real-

time classes of PROFINET traffic. Results 

showed that using PROFINET non-real-

time protocol in an unloaded network 

resulted in a maximum delay of less than 

500µs with standard deviation (jitter) of 

50µs. However, adding an FTP server to 

the network increased delay with a 

maximum delay of 156ms with an average 

of 21ms and standard deviation of 27ms.  



5 
 

With a cycle time of 32ms, the average 

delay between successive transmission was 

32.107ms with standard deviation of 1ms 

in the case of a loaded network. Ferrari et 

al., (2004) argued that this calculated 

standard deviation is less that 5% of the 

cycle time (32ms) and thus concluded the 

correct performance of the PRROFINET-

RT protocol for supporting hard real-time 

control systems.  

 

Being a hardware based solution, 

PROFINET-IRT achieved delays in the 

range of 1ms with standard deviation of 

25µs. Thus PROFINET-IRT was suitable 

to use with systems requiring hard real-

time performance, typically, high 

performance motion control systems 

(Doyle, 2004).  A proposal for enhancing 

the performance of PROFINET-IRT in 

terms of delay was introduced by 

Schumacher et al. (2008), where an 

attempt was made to decrease the delay in 

the range of below milliseconds. 

Schumacher et al. (2008) suggest that the 

main components influencing the 

performance regarding the minimum 

achievable delay are the propagation time 

and frame transmission time. 

 

Since the propagation delay is mainly 

affected by the transmission medium 

which cannot be significantly changed, 

Schumacher et al. (2008) proposed 

different mechanisms to optimize the 

frame transfer time. Firstly, a topology-

based forwarding algorithm using local 

MAC addresses was introduced to reduce 

the time spent for address look-up and thus 

the time taken in the forwarding process.  

Secondly, a mechanism was introduced to 

decrease the length of the used preamble 

bytes to two bytes (1 preamble + 1 SFD) 

instead of eight bytes used in the standard 

Ethernet frame. This was found to improve 

the overall frame transfer time by 480ns 

(Schumacher et al. 2008). 

 

Another real-time Ethernet protocol, 

EtherCAT, was developed by Beckhoff in 

2003 (Prytz, 2008).  EtherCAT operates in 

a master/slave environment with the 

master initiating data transmission by 

sending an Ethernet frame to the slave 

nodes.  EtherCAT uses a summation frame 

approach where a single Ethernet frame is 

used to deliver data (referred to as 

EtherCAT telegrams) to more than one 

node (slaves). Each node extracts the data 

from the frame addressed to it, puts some 

new data in the frame and then sends the 

frame to the next slave. All the message 

reception, data processing and frame 

retransmission operations are made “on the 

fly” by the nodes, without any extra delay 

(Seno and Zunino, 2008). Using 

summation frames increased EtherCAT 

bandwidth efficiency and being a hardware 

based protocol helped achieving delays in 

order of microseconds.  Seno and Zunino 

(2008) developed a simulation model for 

EtherCAT using OPNET. Simulation 

results from the developed model were 

compared with the theortical analysis and 

confirmed that delay increases as the 

number of slave nodes on the network 

increases. 

 

Prytz (2008) compared the real-time 

performance of EtherCAT and 

PROFINET-IRT using scenarios on both 

100Mbps and 1Gbps Ethernet. Results 

showed that EtherCAT had better real-time 

performance compared to PROFINET-

IRT.  Prytz (2008) suggest that these 

results conform to the expected 

performance as the EtherCAT 

communication mechanism relies on the 

summation frame principle where a single 

frame is used to accommodate data for a 

great number of slave nodes. In contrast, 

PROFINET-IRT needs to send a packet 

per each addressed network node. Due to 

this feature, the EtherCAT protocol was 

considered to have the highest 

communication efficiency among real-time 

Ethernet protocols. It was considered 

particularly suitable for networks with a 

large number of devices with small 

payloads (Knezic et al. 2011). 



6 
 

EtherCAT can be problematic in large 

scale networks that consist of several 

hundreds of devices (Knezic et al., 2011) 

because the EtherCAT protocol uses the 

logical ring topology where network 

propagation time is greatly affected by the 

number of network nodes. Knezic et al. 

(2011) proposed an approach to improve 

EtherCAT efficiency over a large scale by 

exploiting the symmetric spatial 

distribution property of the EtherCAT 

networks in which input/output data can be 

exchanged more efficiently leading to a 

significant decrease in EtherCAT frame 

transmission time and thus increased 

communication efficiency. However, a 

drawback of the proposed approach is that 

it is not suitable for networks where 

topology changes are not allowed or in the 

case of non-symmetrical networks. 

 

 

Time-Triggered Ethernet (TTEthernet)  

 

Another real-time Ethernet protocol is the 

Time-Triggered Ethernet Protocol 

(TTEthernet) (Steiner, 2009) that offers 

deterministic real-time communication and 

TCP/IP Ethernet traffic in parallel on the 

same network. TTEthernet‟s high fault-

tolerance and high availability mean that it 

is appropriate for use in safety critical 

aplications such as in aerospace system 

design and automotive systems (Steiner, 

2009). 

 

The main concept of TTEthernet is that it 

uses periodic cycles to transmit time-

critical traffic (referred to as Time-

Triggered (TT) traffic).  Each node in the 

network is assigned an offline 

predetermined timeslot to send its real-

time traffic.  This approach ensures 

predictable transmission delays with no 

queuing and thus low latency and jitter 

(Steinbach et al., 2011).  In addition to the 

time-triggered traffic, TTEthernet defines 

another two types of traffic, Rate-

Constraint Traffic (RC) and Best Effort 

Traffic (BE). Rate-constraint traffic is time 

critical traffic sent with less rigid temporal 

requirements than time-triggered traffic.  

Rate-constraint traffic is based on the 

AFDX standard (Condor Engineering, 

2005).   Best effort traffic is the standard 

Ethernet traffic and is sent with the lowest 

priority. To differentiate between these 

classes, TTEthernet uses a content-

oriented addressing format where the 48-

bit destination Ethernet MAC address is 

used. The MAC address is divided into 

two parts. The first part is the Critical 

Traffic Identifier (CT-ID) where each 

message has unique CT-ID used for 

routing. The second part of the MAC 

address is the Critical Traffic Mask 

(CtMask). Both CT-ID and CtMask 

formsthe CtMarker that is used to 

differentiate critical time traffic (TT and 

RC) from the best effort traffic. 

 

A simulation model for TTEthernet full 

operation was introduced by Steinbach et 

al., (2011). The proposed model, 

TT4INET (CoRE, 2012) presented an 

extension for the OMNeT++ INET 

framework. The implemented model 

provided modules for TTEthernet host as 

well as TTEthernet switch.  

 

 

IEEE 802.1 AVB 

 

Real-time Ethernet protocols are also used 

in real-time data steaming (audio/video) to 

provide a unified network for transmitting 

time determistic as well as best-effort 

traffic. IEEE 802.1 AVB protocol 

introduced different mechanisms to enable 

time-synchronized low latency streaming 

services through 802 networks specified 

by the AVB task group (IEEE802.org, 

2011). Standards used by AVB are: 

 

• IEEE 802.1AS: Time 

synchronization protocol to enable 

synchronization of distributed nodes in 

switched Ethernet . Synchronization is 

achieved with an accuracy of less than 1 μs 

over maximum seven hops.  



7 
 

• IEEE 802.1Qav: Specifies queuing 

and forwarding of time critical traffic. 

AVB defines two classes of traffic, in 

addition to the best effort, depending on 

the required end-to-end delay: 

 

• Stream reservation (SR) class-A: 

Guarantees a maximum 2ms end-to-end 

delay. 

 

• SR class-B: Can achieve up to 

50ms end-to-end delay. 

 

• IEEE 802.1Qat: Signaling 

mechanism for resource reservation to 

ensure that AVB time critical traffic will 

have the required resources along the 

entire path from source to destination. 

Only 75% of the avaliable bandwidth can 

be reserved whereas the rest is used to 

forward best-effort traffic. 

 

Lim et al. (2011) developed a complete 

simulation model of the AVB protocol in 

OMNeT++. The developed model was 

used to evaluate the performance of AVB 

protocol in the worst case scenario of 

seven hops switched Ethernet to verify the 

time constraints of streaming data 

modelled as class A and class B traffic.  

 

Steinbach et al. (2012) used the TT4INET 

framework and developed a simulation 

model for AVB to provide simulation-

based performance evaluation of both 

IEEE 802.1 AVB and TTEthernet when 

used in an in-vehicle network. Simulation 

results showed comparable performance 

for both protocols, however increasing the 

frame payload of background traffic 

affected the end-to-end delay when using 

the AVB protocol. This was not the case 

however with TTEthernet which showed 

robust performance even in the presence of 

large frames background traffic. 

 

 

 

 

 

Flexilink Operation 

 

Flexilink is a protocol that combines the 

advantages of time division multiplexing 

(TDM) and best effort networks (Grant, 

2010). It introduces a unified network 

structure for supporting both time-

deterministic traffic, such as audio/video 

and other data types that require constant 

transmission intervals and predictable 

delay, as well as best-effort data. In 

addition, Flexilink provides full 

compatibility with existing network 

architectures and protocols.  

According to Wang et al. (2012), a node 

that supports Flexilink protocol classifies 

traffic into three main categories which 

are: 

 

• Synchronous Flow (SF) 

representing time-deterministic traffic such 

as audio/video. 

• Asynchronous Flow (AF) 

representing best-effort traffic that are sent 

without real-time constraints but are rather 

sent at the earliest possible opportunity. 

• Control Messages (CM) used for 

setting up and tearing down the link 

between two Flexilink nodes. 

 

In order to ensure that SF traffic is 

complying with timing requirements, time 

slots are reserved for transmitting SF data 

packets. This is done by using control 

messages which can be implemented using 

IEC 62379-5-2 standard.  The standard 

uses SNMP for monitoring and controlling 

of networked audio and video (IEC Project 

Team 62379, 2012). Once the link is 

established, intelligent time slot maps 

identify the reserved time slots based on 

the requirements of the time-critical traffic 

(synchronous flow), gaps between 

reserved time slots can then filled with 

asynchronous flow traffic. This operation 

of Flexilink can achieve maximum 

utilization of link capacity where all the 

gaps, between synchronous flow data 

packets, are filled with asynchronous flow 

traffic. Implementing Flexilink over 



8 
 

Ethernet further maximizes the available 

link capacity and bandwidth efficiency by 

using Ethernet Jumbo Frames. Jumbo 

frames have a payload size greater than the 

standard 1500 bytes Ethernet Frames. Both 

synchronous flow and asynchronous flow 

sent data packets are allocated in the 

payload. This increased payload also helps 

in reducing the cost headers and inter-

frame gap.  

 

Once the link is set up between the two 

Flexilink nodes, all subsequent frames are 

sent from the Flexilink node at one end of 

the link to the node at the other end. This 

means that both the source and destination 

fields of the Ethernet Jumbo Frame header 

are no longer needed. Eliminating these 

unnecessary fields will further maximize 

the frame payload to carry more data 

across the transmission link. This new 

frame format is referred to as Reduced 

Jumbo Frame (RJFrame).  In RJFrame, 

each synchronous flow packet will have a 

1-byte header indicating the length of the 

corresponding packet. This design allows 

Flexilink to support multiple audio 

channels with different sampling 

frequencies and different bit rates.  

 

 

Design of Simulation Model 

 

A model was developed to simulate the 

behaviour of the Flexilink protocol over 

Ethernet networks using OMNeT++ 

simulation platform, INET framework and 

the real time extension TT4INET. 

 

 

Simulation Environment 

 

OMNeT++ is an open source simulation 

tool freely available for research and 

academic use. It is an object-oriented 

modular discrete event-based simulation 

platform.  This discrete event-based 

simulation is suitable for modelling data 

networks where network behaviour can be 

simulated by modelling the events in the 

network such as sending and receiving of a 

packet.   

 

The INET framework is an extension on 

the OMNeT++ simulation platform. It has 

several modules ranging from the physical 

layer to the application layer of the OSI 

model. Protocols such as IPv4, IPv6, TCP 

and UDP are implemented in the INET 

framework. Link layer protocols such as 

Ethernet and 802.11 are also implemented.  

 

Simulation models of both TTEthernet and 

IEEE 802.1 AVB are based on the INET 

framework for OMNet++. These models 

have been introduced and validated in 

previous work such as Lim et al. (2012) 

and Steinbach et al. (2011).  The source 

code of TTEthernet, TT4INET, is 

published by the CoRE (Communication 

over Realtime Ethernet) Research Group 

(2012). 

 

Simulation of Flexilink protocol using 

OMNeT++ and INET framework requires 

the design of custom nodes.  TT4INET 

components were customized to model the 

Flexilink protocol. 

 

 

Flexilink Implementation in OMNeT++ 

 

Based on the specification of Flexilink 

protocol, simulation can be divided into 

two main stages. During the first stage, the 

link between the hosts is setup with an 

intelligent time slot map algorithm. In the 

second stage, the actual data exchange 

between hosts takes place again based on 

Flexilink protocol specification. Custom 

nodes had to be implemented in C++ to be 

able to simulate the behaviour of Flexilink 

protocol using OMNeT++. 

 

The simulation model for Flexilink 

Protocol is based on both the INET 

framework (INET, 2012) and the 

TTETHERNET4INET-Framework. In 

order to be able to simulate the behaviour 

of a network node running Flexilink 



9 
 

protocol it was assumed that traffic from N 

audio sources S1,….,SN with sampling 

frequencies F1,….,FN and thus sampling 

periods T1,…,TN respectively. Figure 1 

shows scheduling of audio sources traffic 

with t0 denoting the start of the allocation 

period and the arrows representing the 

beginning of the time slots allocated for 

each audio source. In the simulation 

model, the cycle time (Tc) is defined to be 

equal to the duration of the Allocation 

Period (AP) which is equal to the duration 

of two successive RJFrames which is 

124.96 µs on 1 Gigabit Ethernet as per 

Flexilink specifications.  In the simulation 

model, N is set to be equal 1, that is only 

one audio source is sending traffic on the 

link 

  

 
Figure 1: Flexilink Allocation Period (AP) 

 

 

Network Setup 

 

A simple point-to-point network model 

with two network nodes was established.  

The nodes are connected with an error free 

1 Gigabit Channel as shown in Figure 2. 

Each network node (referred to as 

FlexiHost) is simulated to send traffic 

generated from two traffic sources. 

SFTrafficSource models a mono audio 

source with a sampling frequency 48 KHz 

and 24 bits encoding generating 1.152 

Mbps. To accommodate this bit rate, the 

source will be allocated six time slots from 

each allocation period with each slot being 

five bytes long. The second traffic source, 

AFTrafficSource, models the background 

traffic that is sent as best-effort data. 

Background traffic is modelled as packets 

of size 1500 bytes which represent the size 

of standard Ethernet Frame.  The time 

interval between sending packets is 

uniformly distributed between zero and 

one second. 

Figure 2: FlexiHost Modules 

 

In the current implementation of FlexiHost 

however, since only one audio source is 

considered, only the second type of events 

is used to trigger the generation of 

synchronous flow packets to be sent from 

SFTrafficSource. The first type of events 

is left for future development of the model 

where more than one audio source can be 

considered.  

 

The FlexiHost compound module consists 

of five modules: FlexiScheduler, 

SFTrafficSource, AFTrafficSource, 

FlexiApplication and FlexiMAC. Names 

gates are self-explanatory. FlexiHost sends 

RJFrames over the physical link via its 

gate (referred to as flexigate).   

 

 

FlexiScheduler Module 

 

The FlexiScheduler module allows events 

to be scheduled in FlexiHost.  

FlexiScheduler implementation was based 

on the design of the scheduler used in 

TT4INET model. FlexiScheduler measures 

simulation time in clock ticks. The 

scheduler module defines two parameters: 

 

• tick: length of clock tick set to 80ns 

• cycle_ticks: number of clock ticks 

in one cycle which is set to 1562 to be 

equal to the duration of the allocation 

period 124.96µs. 



10 
 

 

FlexiScheduler uses the “registerEvent ()” 

method.  Two events are allowed in the 

FlexiScheduler: 

• SchedulerActionTimeEvent: Event 

that could be triggered at a specific time in 

the cycle. 

• FlexiSchedulerTimerEvent: Event 

that is triggered after a specific time. 

 

 

SFTrafficSource Module 

 

SFTrafficSource is a traffic generator for 

synchronous flow packets in the Flexilink 

model.  To simulate the behaviour of audio 

traffic in the model, the implemented 

SFTrafficSource generates equal sized 

packets at fixed intervals. When 

“FlexiSchedulerTimerEvent” message is 

received by the SFTrafficSource on the 

“schedulerIn” gate, packets are sent to the 

“FlexiApplication” module through SFout 

gate. To simulate an audio source with 48 

KHz sampling frequency and 24 bits 

encoding, SFTrafficSource parameters are 

set as payload equals five bytes and 

interval equals 20.83µs. 

 

 

AFTrafficSource Module 

 

AFTrafficSource is a module for best-

effort traffic generation.  It has the same 

design as the Ethernet model traffic 

generator (EthTrafGen module) in the 

INET framework.  The generated packet 

size is set to be 1500 bytes to simulate full 

size Ethernet frames.  The packets sending 

interval is set to have uniform distribution 

between zero and one second. Generated 

packets are sent to the FlexiApplication 

module through AFout gate. 

 

 

FlexiApplication Module 

 

FlexiApplication is a module for outgoing 

traffic for the FlexiMAC module. The 

FlexiApplication uses the “handlemessage 

()” method for incoming traffic to the 

module. Data packets from 

SFTrafficSource are received through SFin 

gate. Data packets from the 

AFTrafficSource are received through 

AFin gate. On arrival asynchronous flow 

packets are placed in a queue and 

transmitted in the gaps between the pre-

allocated time slots for synchronous flow 

traffic. When all the payload space (7785 

bytes) has been allocated, a frame 

(FlexiFrame) is then sent to FlexiMAC 

module through the “out” gate to be 

encapsulated into the payload of RJFrame 

and sent on the physical link. 

 

 

FlexiMAC Module 

 

The FlexiMAC module represents the 

MAC layer of the FlexiHost node. The 

FlexiMAC module receives frames 

(FlexiFrames) from the upper layer 

(FlexiApplication) via its “upperlayerin” 

gate. Received frames are then 

encapsulated into the payload of RJFrame 

and sent over the physical link. Frames 

received from the network through 

FlexiMAC physical gate “phys” are first 

de-capsulated, removing RJFrame headers, 

before being sent to the higher layers. 

 

 

Evaluation of Simulation Model 

 

A simulation of audio traffic transmission 

was carried out on the designed network. 

The aim was to compare the results 

obtained with those expected based on the 

theoretical results of protocol behaviour. 

 

A simulation test was conducted to 

validate the performance of the simulation 

model to make sure that it conforms to the 

expected Flexilink protocol behaviour.  To 

achieve this, the end-to-end latency of SF 

traffic sent from Host_A to Host_B on the 

implemented two node network was 

measured.  Simulation results should show 

end-to-end delay of synchronous flow 



11 
 

traffic in the order of 3µs to 6µs (per hop) 

plus the physical medium propagation 

delay in order to conform to the expected 

protocol behaviour (Wang et al., 2012).  

However, during the simulation phase 

NED files were not linked to their defining 

C++ classes causing errors in the 

simulation.  Using the latest release of 

OMNeT++v4.3 (April 2013) should have 

fixed this bug, however, due to the time 

constraints of the project, using this 

version was not possible and validation of 

the simulation model remains as future 

work. 

 

 

5 Conclusion and Future Work 

 

The aim of the project was to develop a 

simulation model for the Flexilink protocol 

to serve as a test tool for the future 

development and study of the protocol.  

The Flexilink protocol has been carefully 

examined and a simulation model has been 

implemented on OMNeT++ simulation 

platform. 

 

The major limitation in the simulation 

model is that it is a simplified version of 

the Flexilink protocol due to time 

constraints and the challenges encountered 

in implementing Flexilink in OMNeT++.  

Further work is needed to: 

 

1. Validate the presented two node 

network using OMNeT++ v4.3 in terms of 

conformance of the simulation results with 

the expected Flexilink behavior presented 

in Wang et al., (2012). 

2. Investigate Flexilink behaviour in 

transmitting traffic from multiple audio 

sources with different sampling 

frequencies and timing requirements. 

3. Implement the full version of 

Flexilink in OMNeT++ including the 

Precision Timing Protocol (IEEE 1588) 

and intelligent time slot mapping 

algorithm. 

4. Implement the network switch 

node that supports Flexilink in OMNeT++ 

for future implementation of larger 

networks supporting Flexilink over 

Ethernet. 

5. Compare the performance of 

Flexilink over Ethernet in steaming data 

applications to other peer protocols such as 

IEEE 802.1 AVB. 

6. Investigate the potential for using 

the Flexilink protocol over other physical 

mediums such as optical fibres. 

 

The model to simulate Flexilink behaviour 

over Ethernet will help the future 

development of the protocol. It will also 

serve as a tool for comparing Flexilink 

with other peer protocols in terms of 

performance and design complexity. 

 

 

References 

 

Austerberry, D. (2005) The Technology of 

Video and Audio Streaming, Second 

Edition, Focal Press, Oxford. 

 

Condor Engineering (2005) AFDX / 

ARINC 664 Tutorial (1500-049), 

http://www.cems.uwe.ac.uk/~ngunton/afdx

_detailed.pdf, [accessed 29 September 

2013]. 

 

CoRE (Communication over Realtime 

Ethernet) (2012) 

http://tte4inet.realmv6.org,  [accessed 29 

November 2012]. 

 

Doyle, P. (2004) „Introduction to Real-

Time Ethernet II‟, Contemporary Control 

Systems, 5(4), pp. 1-6. 

 

Ferrari, P., Flammini, A., Marioli, D. and 

Taroni, A. (2004) „Experimental 

Evaluation of PROFINET Performance‟, 

Proceedings of IEEE International 

Workshop on Factory Communications 

Systems, 22-24 September, Vienna, pp. 

331-334. 

 

Grant, J. S. (2010) „Method And 

Apparatus For Transceiving Data‟, 



12 
 

available at: 

http://patentscope.wipo.int/search/en/WO2

010082042, [accessed 23 November 

2012]. 

 

IEC Project Team 62379 (2012) IEC 

62379 Common Control Interface For 

Networked Digital Audio and Video 

Products, http://www.cenelec.eu, [accessed 

29 September 2013]. 

 

IEEE802.org (2011) Audio/Video 

Bridging Task Group, 

http://www.ieee802.org/1/pages/avbridges.

html, [accessed 22 November 2012]. 

 

INET, (2012), „INET Frameowork‟, 

http://inet.omnetpp.org, [accessed 29 

November 2012]. 

 

Knezic, M., Dokic, B. and Ivanovic, Z. 

(2011) „Increasing EtherCAT Performance 

Using Frame Size Optimization 

Algorithm‟, Proceedings of the IEEE 

International Conference on Emerging 

Technolgoies and Factory Automation, 5-9 

September, Toulouse, pp. 1-4. 

 

Lim, H-T., Herrscher, D., Waltl, J. M. and 

Chaari, F. (2012) „Performance Analysis 

of the IEEE 802.1 Ethernet Audio/Video 

Bridging Standard‟, Proceedings of the 

Fifth International ICST Conference on 

Simulation Tools and Techniques, 19-23 

March 2012, Sirmione-Desenzano, pp. 27-

36. 

 

Popp, M. and Wenzel, P. (2001) 

„PROFInet-linking Worlds‟, Proceedings 

of the Eighth IEEE International 

Conference on Emerging Technologies 

and Factory Automation, 15-18 October, 

Antibes-Juan les Pins, pp. 519-522. 

 

Prytz, G. (2008) „A Performance Analysis 

of EtherCAT and PROFINET IRT‟, 

Proceedings of the IEEE International 

Conference on Emerging Technolgoies 

and Factory Automation, 15-18 

September, Hamburg, pp. 408-415. 

Schwager, J. (2003) „Information about 

Real-Time Ethernet in Industry 

Automation‟, http://www.pdv.reutlingen-

university.de/rte/#Zu Lösung 19: DART-

E, [accessed 22 November 2012]. 

 

Schumacher, M., Jasperneite, J. and 

Weber, K. (2008) „A New Approach for 

Increasing the Performance of the 

Industrial Ethernet System PROFINET‟, 

Proceedings of the IEEE International 

Workshop on Factory Communication 

Systems, 21-23 May, Dresden, pp. 159-

167. 

 

Seno, L. and Zunino, C. (2008) „A 

Simulation Approach to a Real-Time 

Ethernet Protocol: EtherCAT‟, 

Proceedings of the IEEE International 

Conference on Emerging Technologies 

and Factory Automation, 15-18 

September, Hamburg, pp. 440-443. 

 

Steinbach, T., Kenfack, H. D., Korf, F. and 

Schmidt, T. C. (2011) „An Extension of 

the OMNET++ INET Framework for 

Simulating Real-time Ethernet with High 

Accuracy‟, Proceedings of the Fourth 

International ICST Conference on 

Simulation Tools and Techniques, 22-24 

March 2011, Barcelona, pp. 375-382. 

 

Steinbach, T., Kenfack, H. D., Korf, F. and 

Schmidt, T. C. (2011) „An Extension of 

the OMNET++ INET Framework for 

Simulating Real-time Ethernet with High 

Accuracy‟, Proceedings of the Fourth 

International ICST Conference on 

Simulation Tools and Techniques, 17-19 

March, Lisbon, pp. 375-382. 

 

Steinbach, T., Lim, H-T., Korf, F., 

Schmidt, T. C., Herrscher, D. and Wolisz, 

A. (2012) „Tomorrow‟s In-Car 

Interconnect? A Competitive Evaluation of 

IEEE 802.1 AVB and Time-Triggered 

Ethernet (AS6802)‟, Proceedings of the 

Vehicular Technology Conference, 3-6 

September, Quebec, pp. 1-5. 

 



13 
 

Steiner, W. (2009) TTEthernet 

Specification, http://www.tttech.com, 

[accessed 10 December 2012]. 

 

Wang, Y., Grant, J. and Foss, J. (2012) 

„Flexilink: A Unified Low Latency 

Network Architecture for Multichannel 

Live Audio‟, Presented at the 133rd Audio 

Engineering Society Convention, 26-29 

October, San Francisco. 

 

 


