Birmingham City University Faculty of Health, Education and Life Sciences
 Diploma Higher Education Operating Department Practice
 Sample Pre-entry Numeracy Assessment - ANSWERS

Time allowed to complete this paper is 30 Minutes. There are a possible 30 marks
This paper consists of 6 questions, although some questions have more than one part. The questions are designed to test your knowledge of:

- addition
- subtraction
- division and multiplication
- use of decimals
- fractions
- percentages

You are not permitted to use a calculator and all working out must be shown on the paper.

To achieve a pass you will need to achieve 20 marks out of a possible 30 .

Good luck!

1. The following figures have been represented as a fraction, decimal and percentage (\%). In each case one figure does not equal the other two. Review the figures below and circle the one that does not equal the other two.

$1 / 5$	0.2	15%
$1 / 15$	0.05	5%
$5 / 4$	1.20	125%
(3 Marks)		

2. Work out exactly:

$$
\begin{array}{ll}
225 \div 9= & 25 \\
56 \div 7= & 8 \\
65 \div 13= & 5 \\
105 \div 15= & 7 \\
770 \div 22= & 35
\end{array}
$$

(5 marks)
3. Circle all the fractions that equate to $40 / 50$.
$\begin{array}{llllll}12 / 16 & 4 / 5 & 20 / 25 & 75 / 95 & 8 / 10 & 80 / 100\end{array}$
(4 Marks)
4. $\mathrm{BMI}=($ Weight in Kilograms) Height in Metres ${ }^{2}$

Paul weighs 150 kgs and is 180 cm tall. He wants to know if he is overweight.
(6 Marks)
$180 \mathrm{~cm}=1.8 \mathrm{M}$
a. $\times 1.8=3.24^{2}$
$150 \div 3.24=46.3$
Therefore $\mathrm{BMI}=46.3$
5. Convert the following:

43 mg to $\mathrm{G}=$	0.043 G
1.4 G to $\mathrm{mg}=$	$1,400 \mathrm{mg}$
1.6 mg to $\mathrm{mcg}=$	1600 mcg
89 mcg to $\mathrm{mg}=$	0.089 mg
(4 Marks)	

6. Work out the following:
$43 \times 80=3440$
$189 \times 125=23625$
$496 \times 228=113088$
(3 Marks)
7. In theatre the patient blood loss is calculated by weighing the blood soaked swabs and subtracting the weight of the dry swab. Each gram is considered to be equivalent to 1 ml of blood. Calculate the blood loss for the patient below.

Wet Swab Weight	Dry Swab Weight	Blood loss
68 g	20 g	$48 \mathrm{~g}=48 \mathrm{~m} / \mathrm{s}$
22 g	15 g	$7 \mathrm{~g}=7 \mathrm{~m} / \mathrm{s}$
79 g	33 g	$46 \mathrm{~g}=46 \mathrm{~m} / \mathrm{s}$
97 g	47 g	$50 \mathrm{~g}=50 \mathrm{~m} / \mathrm{s}$
Total Blood loss		$151 \mathrm{~m} / \mathrm{s}$

(5 Marks)

